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Understanding the characteristics of air tra�c delays and disruptions is critical for developing ways to

mitigate their significant economic and environmental impacts. Conventional delay performance metrics

reflect only the magnitude of incurred flight delays at airports; in this work, we show that it is also important

to characterize the spatial distribution of delays across a network of airports. We analyze graph-supported

signals, leveraging techniques from spectral theory and graph signal processing to compute analytical and

simulation-driven bounds for identifying outliers in spatial distribution. We then apply these methods to

the case of airport delay networks, and demonstrate the applicability of our methods by analyzing US

airport delays from 2008 through 2017. We also perform an airline-specific analysis, deriving insights into

the delay dynamics of individual airline sub-networks. Through our analysis, we highlight key di↵erences in

delay dynamics between di↵erent types of disruptions, ranging from nor’easters and hurricanes to airport

outages. We also examine delay interactions between airline sub-networks and the system-wide network, and

compile an inventory of outlier days that could guide future aviation operations and research. In doing so, we

demonstrate how our approach can provide operational insights in an air transportation setting. Our analysis

provides a complementary metric to conventional aviation delay benchmarks, and aids airlines, tra�c flow

managers, and transportation system planners in quantifying o↵-nominal system performance.

Key words : airline networks; Graph Signal Processing; graph Fourier analysis; spectral methods; weather

disruptions; airport operations; flight delays

1. Introduction

The air transportation system is a complex and highly interconnected infrastructure that is critical

to enabling several aspects of modern society. In the US, airlines operate over 28,000 daily flights,

transporting over 2.4 million passengers and 58,000 tons of cargo per day (Airlines for America
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2018). Civil aviation accounts for 5.1% of the US Gross Domestic Product, and generates $1.6

trillion in revenues (Federal Aviation Administration 2017). The operational characteristics of air

transportation renders it vulnerable to a variety of disruptions. In order to achieve a resilient and

robust system, it is important to understand the impacts of, and recovery from, such disruptions.

The impacts of air tra�c disruptions are most often manifested by canceled and delayed flights.

Weather is the primary cause of air transportation disruption, accounting for almost 40% of

incurred delays in 2017 (US Department of Transportation 2018). Low cloud ceilings, high winds,

low visibility, and thunderstorms can significantly reduce the capacity of an airport runway or an

airspace sector. Other causes of disruption include aircraft equipment issues, airport airside and

landside abnormalities such as security threats and fires, as well as air tra�c control related issues

such as sta�ng shortages and strikes. These disruptions vary in their timings, intensities, and

durations; furthermore, due to the highly-interconnected nature of the system, local perturbations

have widespread impacts. In fact, secondary or reactionary delays account for approximately 40%

of the domestic delay minutes in the US during 2018 (Bureau of Transportation Statistics 2018).

Flight delays cost the US economy $32.9 billion annually (Ball et al. 2010), which is approximately

$500 per minute of flight delay. Single instances of large-scale weather disruptions also cause severe

economic and operational impacts: The January 22-24, 2016 winter storm resulted in the cancel-

lation of over 11,000 flights, and an estimated financial losses of over $100 million. Airlines, air

navigation service providers (ANSPs), and infrastructure planners will all benefit from the study

of disruptions and the resultant impact patterns, in order to anticipate and mitigate their e↵ects.

1.1. Problem motivation

Most operational performance benchmarks set by ANSPs and airlines measure, either directly

or indirectly, the magnitude of incurred flight delays. However, there is a second, more subtle,

performance metric: the spatial distribution of delays through the system. Two disruptive events

could result in the same total delay, but a↵ect very di↵erent airports spatially, resulting in di↵erent

operational impacts. The overarching theme of our work is to identify and analyze days in terms

of both the magnitude and the spatial distribution of delays.

The delays experienced by two airports may not be independent; they could be correlated due to

geographic proximity, tra�c volumes, delay propagation, airline schedules, and tra�c flow manage-

ment procedures. For example, nor’easter systems typically a↵ect several East Coast hub airports,

resulting in correlated delays. There is consequently the notion of a typical or expected spatial

distribution of delays, reflected by the statistical correlations between delays at di↵erent airports.

We illustrate this notion with the example of Boston Logan International (BOS) and New York

LaGuardia (LGA) airports. The delays at these airports are positively correlated, due to the high
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tra�c volume between them, as well as their geographic proximity. When either airport experiences

high delays, we expect high delays at the other airport as well. However, high delays at one of the

airports but low delays at the other would be an unexpected occurrence. This unusual behavior

would not be captured by the magnitude of delays alone: BOS and LGA may both experience

average delays of 90 minutes on one day, while on another day, BOS may experience an average

delay of 170 minutes and LGA only 10 minutes. The sum of the delays at the two airports will

be 180 minutes on both days, even though the latter day experiences an unexpected distribution

of delays. The size of the network in terms of the number of nodes (airports) also complicates a

pairwise analysis of spatial delay distributions. The spectral and GSP-based method proposed in

this paper addresses these challenges.

In this paper, the events that cause delays (e.g. extreme weather, airport outages, etc.) are

referred to as o↵-nominal events or disruptions. The resultant spatial delay distributions can be

either expected or unexpected. An expected spatial delay distribution is consistent with the historical

delay correlations between the airports, whereas an unexpected spatial delay distribution refers to

one that is not. A key objective of this work is to identify days that are unusual in terms of the

magnitude or the spatial distribution of delays. We will formally define these outlier days in scale

and outlier days in distribution in Section 3.

1.2. Problem description

We address three primary questions through the methods and results presented in this paper:

1. Defining and characterizing outliers in graph signals: We develop a mathematical

framework to characterize days with unexpected spatial distributions of delays. Using this frame-

work, we propose an outlier detection theory that identifies such days, using a combination of

analytical and simulation-driven techniques.

2. Operational insights from the outlier analysis: We interpret the results of analyzing

spatial distribution of airport delays from an operational perspective. In particular, we identify

specific airports or groups of airports that contribute to unexpected delay dynamics on a given

day, and observe di↵erences in delay patterns between various types of disruptions.

3. System-wide versus airline-specific dynamics: In addition to a system-wide analysis, we

consider the airline sub-networks and their influence on the whole system. We examine the question

of expected versus unexpected spatial delay distributions from the perspective of individual airlines,

compare these sub-networks, and evaluate the impacts of disruptions on di↵erent airlines.

1.3. Literature review

Several previous works have focused on modeling the dynamics of flight delays, using approaches

ranging from queuing theory (Pyrgiotis, Malone, and Odoni 2013), network models (Gopalakrish-

nan, Balakrishnan, and Jordan 2016b,c), discrete event simulators (Ahmadbeygi, Cohn, and Lapp
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2010), and machine learning (Kim et al. 2016). The insights developed by these prior works help

explain the observed correlations between delays at di↵erent airports.

Prior e↵orts have also considered grouping weather phenomena in the US National Airspace

System (NAS) (Sarkis and Talluri 2004, Grabbe, Sridhar, and Mukherjee 2013, Mukherjee, Grabbe,

and Sridhar 2013), clustering similar airport arrival capacity profiles (Liu, Hansen, and Mukherjee

2008, Buxi and Hansen 2013) and tra�c management initiatives such as Ground Delay Programs

(GDPs) (Kuhn 2016, Gorripaty et al. 2017, Ren, Kim, and Kuhn 2018), identifying anomalous

aircraft trajectories (Seah, Aligawesa, and Hwang 2010, Li et al. 2015, 2016), and more pertinently,

clustering delay networks (Rebollo and Balakrishnan 2014). However, these previous works have

two key limitations: They examine only particular sub-components of the system such as a specific

airport, a small group of airports, or individual flight trajectories; and they only consider the

magnitude, and not the spatial distribution, of disruptions or delays. As noted in Section 1.1, it is

critical to examine both facets in order to gain a wider operational perspective.

The identification of unexpected spatial delay distributions is related to the broader problem

of outlier detection. A common approach to this problem involves clustering, where data points

that are far away from clusters are labeled as outliers (Hadi 1992). Prior work has considered

k-means (Gan and Ng 2017), hierarchical clustering (Deb and Dey 2017), density-based clustering

(DBSCAN (Abid, Kachouri, and Mahfoudhi 2017)), as well as graph similarity measures (Isufi,

Mahabir, and Leus 2018) to identify outliers as data observations that do not belong to any cluster.

Another approach involves fitting known distributions to the observed data, and using statistical

tests to evaluate if the data point falls at the tails of such distributions (Filzmoser 2004, Rocke and

Woodru↵ 1996). While the Gaussian (Filzmoser 2004, Peña and Prieto 2001) or Gaussian mixture

model (Lam et al. 2017) assumption is the most common, recent works have even considered black-

box deep neural networks (Kieu, Yang, and Jensen 2018) to empirically identify the tails of the

distributions. Information-theoretic approaches have also been considered to identify structural

outliers (Shekhar, Lu, and Zhang 2002, Eberle and Holder 2007). While these approaches are

successful in detecting outliers, they do not identify outliers based on spatial distributions, they

cannot decouple the detection of outliers based on magnitude versus spatial distribution, and there

may not be an interpretable explanation for why a particular point was classified as an outlier. In

particular, the interpretability of our results is critical to providing implementable insights.

Central to our methods is the GSP framework (Sandryhaila and Moura 2013, 2014a,b, Shuman,

Ricaud, and Vandergheynst 2016, Shuman et al. 2013), which extends the notion of a Fourier

decomposition to a graph setting, and provides a toolkit to analyze signals on graphs. Our focus

on graph-supported signals di↵erentiates our contributions from the large class of prior work that

focuses on the structure of the graph (e.g., Laplacian embeddings from Belkin and Niyogi (2002))
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without any notion of signals supported on such graph structures. Other researchers have applied

graph spectral theory for classification (Ahmed, Dare, and Boudraa 2017), filtering or smoothing

(Shuman, Ricaud, and Vandergheynst 2016), and extending convolutional neural networks for

graphs (Bronstein et al. 2017). Spectral methods have been used to study surface tra�c congestion

(Crovella and Kolaczyk 2003, Mohan et al. 2014) as well as air tra�c flows in Air Route Tra�c

Control Centers (ARTCCs) (Drew and Sheth 2014, 2015). In particular, Drew and Sheth (2014,

2015) note that spectral methods for air tra�c flow management often produce results that are

not clearly interpretable; our approach of combining GSP with an outlier detection framework

overcomes this limitation.

The identification of outliers is critical for tasks such as data processing, ensuring data integrity,

data-driven diagnostics, and anomaly detection. While several techniques exist for outlier detection

in multivariate and graphical data sets, they typically focus on data points with deviations in

magnitude, and not unexpected spatial distributions across the nodes of a graph. Finally, outside

of the transportation context, GSP-based signal classification and anomalous signal detection have

been studied using signal spectrum characteristics with no formalized outlier detection theory

(Egilmez and Ortega 2014, Drayer and Routtenberg 2018, Sun et al. 2019).

1.4. Manuscript outline

The remainder of the manuscript is organized as follows. Section 2 outlines the main contributions of

our work. Section 3 presents the main methodological contributions, including our GSP framework

and data-driven approaches for identifying outliers. The analytical expressions for bounds that

demarcate outliers can be found in the appendix (Sections A, B, and C). In Section 4, we apply our

methods to the US system-wide aviation network. We then consider airline-specific sub-networks

and compare them to their system-wide counterpart in Section 5. Section 6 presents concluding

remarks and directions for future work.

2. Contributions of this paper

The major contributions of this work are as follows:

1. We formalize notions of, and develop tools to identify, outliers in graph signals. We show how

the total variation metric can help identify graph-supported signals with an unexpected distribution

across the nodes.

2. The proposed methods leverage GSP to provide interpretable explanations for why certain

data points are classified as outliers in spatial delay distributions. We identify, via eigenvector

modes, specific groups of airports whose delays on a particular day are unexpectedly distributed,

and correlate them with known operational disruptions.



Li, Gopalakrishnan, Pantoja, Balakrishnan: Spectral Approaches for Analyzing Aviation Disruptions
6 Article submitted to Transportation Science; manuscript no. TS-2019-0414.R1 (Accepted, September 2020)

3. We identify, analyze, and interpret spatial delay patterns across the NAS, with a focus on

specific types of disruptions such as nor’easters, hurricanes, airport outages, and thunderstorms.

We characterize the di↵erences in the impact of various types of disruptions.

4. We examine the spatial delay dynamics of airline sub-networks with di↵erent routing strategies

(e.g., hub-and-spoke versus point-to-point), observe their interactions, and compare the impacts of

disruptions on them and the system-wide network.

Our methodology identifies outlier NAS days containing disruptions with unexpected delay

dynamics that could neither have been comprehensively detected using prior methods, nor opera-

tionally interpreted. With this new inventory of outlier NAS days, ANSPs will be able to diversify

airspace scenario playbooks to include these rare but operationally important events. This in turn

provides a more robust set of playbooks, reducing the need for tactical re-planning. Similar benefits

specific to airline sub-networks can be derived from our airline-specific analysis.

The methods proposed in this paper can be applied to a number of networked systems, including

other transportation systems, the Internet-of-Things, power systems, communication networks,

and biological systems. A preliminary version of this work without a formalized outlier detection

framework or airline-specific analysis was published in Li et al. (2019).

3. Methodological framework

In order to present our methodological framework, we first set up standard notations and termi-

nologies from spectral theory and GSP in Sections 3.1 and 3.2. We develop the definitions and

propositions directly related to our outlier detection theory in Section 3.3, with additional the-

oretical analyses in the appendix (Sections A, B, and C). We provide an empirical, data-driven

approach to identifying outliers in Section 3.4 based o↵ of the formal outlier theory.

In the context of transportation systems, our methodology identifies geo-spatial outlier events

(e.g., geographical disruptions, irregular operations, sudden demand-capacity imbalances) by ana-

lyzing large-scale system performance metrics. Specifically, we apply our outlier detection theory

to the air transportation network, using the performance metric of airport delays as the graph

signals. The definitions, propositions, and data-driven outlier identification techniques formalized

in this section form the basis for the analysis of the system-wide and airline-specific delay networks

in Sections 4 and 5, respectively.

3.1. Setup and notations

Let us consider a multidimensional real signal x 2 RN⇥1. The N elements of the signal are not

independent if they are observed at interconnected elements of a network. We can model the

networked system as a graph G= (V,E), where V is the set of |V |=N nodes and E ✓ V ⇥V is the

set of edges. We consider x to be supported on the nodes of G; i.e., there is a mapping f : V !R
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from i2 V to the ith element, xi, of x. There is a weight map w :E!R that assigns a weight wij

to edge (i, j) 2E. These weights can be represented using an adjacency matrix A 2 SN⇥N , where

[A]ij =wij. We restrict ourselves to undirected graphs, where wij =wji and A=A|.

Suppose we are given a set of M data points, OM = {x(1), . . . ,x(k), . . . ,x(M)
}, where each data

point is x(k) =
⇣
x(k)
1 , . . . , x(k)

N

⌘|
2RN⇥1. The empirical mean of the graph signal at node i is given

by µ̂i =
1
M

PM
k=1 x

(k)
i , and the sample Pearson correlation coe�cient rij|OM

on edge (i, j) is

rij|OM
=

PM
k=1

⇣
x(k)
i � µ̂i

⌘⇣
x(k)
j � µ̂j

⌘

r
PM

k=1

⇣
x(k)
i � µ̂i

⌘2
r
PM

k=1

⇣
x(k)
j � µ̂j

⌘2
. (1)

For the remainder of this paper, we set [A]ij = wij = rij|OM
. Our graph can be referred to as

a correlation network, since the edge weights correspond to the correlation between the signals

at two nodes. The signals x are assumed to be realizations of some non-negative random vector

X = (X1, . . . ,XN)| 2 RN⇥1
�0 drawn from some non-negative distribution with well-defined means

µ= (µ1, ..., µN)
|
2RN⇥1 and covariance ⌃2RN⇥N , ⌃⌫ 0. The correlation matrix C= [⇢ij]2RN⇥N

is given by:

⇢ij =
E[(Xi�µi)(Xj �µj)]p

E[(Xi�µi)2]E[(Xj �µj)2]
. (2)

While the value of C for the underlying distribution of the graph signal vectors may not be

known, it can be estimated from OM since rij|OM
is a consistent estimator of ⇢ij, meaning that

lim
M!1

�
rij|OM

�
= ⇢ij. Consequently, A and C are interchangeable in this paper (see appendix for the

partial information case where A⇡C). Finally, we denote norms by k?k :RN
!R�0, and we use

1-norms kxk=
PN

i=1|xi| unless otherwise specified.

3.2. Preliminaries and definitions

We define some preliminary concepts from spectral theory that we will use for outlier detection.

Definition 1 (Graph Laplacian) The (combinatorial) graph Laplacian L with respect to a graph

with adjacency matrix A is L =D �A, where D = [dij] 2 RN⇥N is the diagonal degree matrix of

the graph, with dii =
PN

j=1wij.

The graph Laplacian L is a real symmetric matrix with a full set of orthogonal eigenvectors. The

normalized eigenvectors are denoted by vi 2RN⇥1, i2 {1, . . . ,N}, with v|i vj = �ij, where

�ij =

(
1 if i= j

0 otherwise
. (3)

All the eigenvalues satisfy Lvi = �ivi. We sort the eigenvalues such that �1  �2  . . . �N . Since the

graph Laplacian has row sums of 0 (Definition 1), v1 = 1 is the constant eigenvector corresponding



Li, Gopalakrishnan, Pantoja, Balakrishnan: Spectral Approaches for Analyzing Aviation Disruptions
8 Article submitted to Transportation Science; manuscript no. TS-2019-0414.R1 (Accepted, September 2020)

to the eigenvalue �1 = 0. Furthermore, the multiplicity of eigenvalues equal to 0 is the number of

connected components in the underlying graph. Thus, if the correlation network is fully connected,

then 0 = �1 < �2  . . . �N , and span ({v1, ..., vN})⇠= RN⇥1. Any vector x 2 RN⇥1 can be written

as a linear combination of {v1, ..., vN}; i.e., there exist scalars ↵i such that x=
PN

i=1↵ivi.

Definition 2 (Graph Fourier Transform (GFT)) The Graph Fourier Transform (GFT) of a

graph signal vector x is the set of scalars {↵1, ...,↵N} where ↵i = v|ix.

To draw an analogy to the classical Fourier transform, the eigenvectors are equivalent to sinusoids

on graphs, and the eigenvalues correspond to discrete frequencies. The scalar ↵i 2 {↵1, ...,↵N}

represents the magnitude of contribution of the ith eigenvector of “frequency” �i. Similar to the

notion of spectral energies for the classical Fourier transform, larger eigenvalues are associated with

eigenvectors having higher graph spectral energies, as follows.

Definition 3 (Spectral and total energy) The spectral energy of x corresponding the ith eigen-

vector is ↵2
i , and the total energy of x is given by kxk22 =

PN
i=1↵

2
i .

The graph Laplacian can also be used to compute a measure of the “smoothness” of a graph

signal x, called the total variation.

Definition 4 (Total variation (TV)) The total variation (TV) of a graph signal x with respect

to the graph Laplacian L is defined as:

TV(L,x) =
1

2

X

i 6=j

wij(xi�xj)
2 = x|Lx. (4)

For brevity, we write TV(x), dropping the reference to the graph Laplacian L. When the TV is

computed with respect to the random vector X, we denote it as TV(X).

The total variation provides a metric map TV :RN⇥N
⇥RN⇥1

!R that measures the smoothness

of a graph signal. A low value of TV corresponds to a graph signal that is said to be smooth. The

following proposition helps to interpret the GFT in terms of the TV and signal smoothness:

Proposition 1 Suppose we have a data point x(k)
2 OM and its GFT {↵(k)

1 , ...,↵(k)
N }. Then, the

following two statements are equivalent:

(i) TV
�
x(k)

�
=
�
x(k)

�|
Lx(k).

(ii) TV
�
x(k)

�
=
PN

i=1

⇣
↵(k)

i

⌘2

�i.
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Proof of Proposition 1. Starting with the definition for the TV of x(k), we show that it is equivalent

to
PN

i=1

⇣
↵(k)

i

⌘2

�i:

TV
�
x(k)

�
=
�
x(k)

�|
Lx(k) =

NX

j=1

↵(k)
j v|j L

NX

i=1

↵(k)
i vi =

X

i,j

↵(k)
i ↵(k)

j �iv
|
jvi =

NX

i=1

⇣
↵(k)

i

⌘2

�i (5)

The last equivalence comes from the fact that vi and vj are orthogonal eigenvectors, i.e. hvi, vji= �ij.

⇤
Proposition 1 formalizes the relationship between the GFT, the TV of a graph signal, and the

spectral and total energies of a graph signal. Larger contributions of the eigenvector vi to the GFT

of x (i.e., larger values of ↵i) result in a higher TV, translating to a less smooth graph signal.

Similarly, the more energetic eigenvectors (i.e., larger values of �i) contribute to a higher TV,

resulting in a less smooth graph signal. Since the eigenvalues are sorted in ascending order with

respect to index i2 {1, ...,N}, we compare eigenvalue magnitudes using the index i.

3.3. Graph signal outliers

Recall that the edge weights of the correlation matrix are given by rij|OM
. For a pair of nodes

i, j 2 V connected by an edge with weight rij|OM
, the contribution to the TV is rij|OM

(xi�xj)
2.

We consider the following possible scenarios:

Case 1: If the graph signals from i and j are highly correlated (i.e., rij|OM
! 1), one would then

expect that the graph signal magnitudes change in a similar manner. One would expect both xi

and xj to be large, or both to be small (i.e., xi ⇡ xj). However, a new observation may, or may

not, conform to the expected behavior.

Case 1a: When the observed data point is as expected (i.e., it is consistent with historical

trends), its contribution to the TV is small, since the second term in rij|OM
(xi�xj)

2 is small.

Case 1b: When the observed data point di↵ers significantly from what is expected, its con-

tribution to the TV is not small, since the second term in rij|OM
(xi�xj)

2 is large.

Case 2: If the graph signals from i and j are uncorrelated (i.e. rij|OM
! 0), then based on

historical observations, we do not expect specific trends in the graph signal magnitudes. In this

case, regardless of any realized signal magnitudes xi and xj, the contribution to the TV is small,

since the first term of rij|OM
(xi�xj)

2 is small.

The above reasoning is valid when the signs of the correlation coe�cients are all the same. If only

a small fraction of correlation coe�cients have di↵ering signs, a projective a�ne transformation can

be applied to rij|OM
, and the intuition still holds (see appendix for details). The analysis of networks

with mixed-sign correlation coe�cients is a direction for future research. Cases 1 and 2 motivate

the use of TV as a metric for outlier detection in terms of a graph signal’s spatial distribution.



Li, Gopalakrishnan, Pantoja, Balakrishnan: Spectral Approaches for Analyzing Aviation Disruptions
10 Article submitted to Transportation Science; manuscript no. TS-2019-0414.R1 (Accepted, September 2020)

Since Case 1b is the only case where a high TV may occur, such an occurrence is deemed to be

unexpected given historic observations. The TV metric yields an aggregate representation of the

behavior of x across the entire graph. We now define the notion of a weak outlier in distribution.

Definition 5 An observation x is considered a weak distribution outlier of level k or a weak

outlier in distribution of level k if

TV(x) /2
h
E [TV(X)]� k

p
Var [TV(X)], E [TV(X)] + k

p
Var [TV(X)]

i
, (6)

for some k� 0. In other words, an observation is considered to be a weak outlier in distribution if

its TV does not lie within k standard deviations of its expected value.

The quantity TV(X) is a derived random variable with mean E [TV(X)] and variance

Var [TV(X)]. Although the definition of a weak outlier in distribution captures variations with

respect to historical trends, it does not account for TV scaling quadratically with the graph signal’s

magnitude. An observation should not be labeled an outlier in distribution if it has a higher TV

simply due to having a larger magnitude. We therefore designate it a weak outlier in distribution,

and propose an alternative metric that captures outliers in magnitude, or scale. This metric corre-

sponds to a classic definition of outliers in multidimensional data: observations with kxk di↵ering

significantly from E[kxk].

Definition 6 An observation x is considered to be a scale outlier of level k or an outlier in scale

of level k if

kxk /2
h
E[kXk]� k

p
Var[kXk], E[kXk] + k

p
Var[kXk]

i
,

for some k � 0. In other words, an observation is considered to be an outlier in scale of level k if

its norm does not lie within k standard deviations of its expected value.

The notion of outliers in scale distinguishes the e↵ects of a graph signal’s magnitude from its

spatial distribution. However, since we know that TV is a quadratic form on x, the definition of

weak outliers in distribution does not eliminate the dependence between TV(x) and its realized

magnitude kxk. We therefore condition the expectation and variance of TV(X) with respect to

its realized norm kXk = kxk in order to eliminate this dependence, giving rise to the following

definition of a strong outlier in distribution:

Definition 7 An observation x is considered to be a strong distribution outlier of level k or a

strong outlier in distribution of level k if TV(x) /2 [A,B], where

A=E [TV(X) | kXk= kxk]� k
p

Var [TV(X) | kXk= kxk]

B=E [TV(X) | kXk= kxk] + k
p

Var [TV(X) | kXk= kxk],
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for some k � 0. In other words, an observation is considered to be a strong outlier in distribution

if its TV does not lie within k standard deviations of its expected value, conditioned on the realized

norm kXk= kxk.

The interpretation of our definitions in the context of airport delays is as follows: outliers in scale

identify days where the sum of all airport delays is higher or lower than expected, whereas outliers

in distribution identify days where the geographical pattern of airport delays are unexpected. To

summarize our various definitions of outliers, Figure 1 presents a graphical description of these

definitions. Note that the sum of all airport delays is precisely the 1-norm of x because all airport

delays over a day are non-negative. This characteristic justifies the equality kxk=
PN

i=1 xi, and is

a commonality in many transportation networks with non-negative signals (e.g. number of bikes

at a bike share station). Additionally, since strong outliers in distribution captures solely the

geographical spread of airport delays, it will be our metric of choice for the remainder of this paper.

While analytical expressions for strong outliers in distribution remain an open problem, our goal in

the next subsection is to generate empirical bounds for strong outliers in distribution. For brevity,

we relegate our analysis of outliers in scale and weak outliers in distribution to Sections A and B

in the appendix.

TV #

#

$ TV %

$ TV % + ' Var TV %

$ TV % − ' Var TV %

$ %
$ % − ' Var % $ % + ' Var %

$ TV % | % = #

$ TV % | % = # + ' Var TV % | % = #

$ TV % | % = # − ' Var TV % | % = #

Figure 1 Notional representation of bounds that we will derive analytically (outliers in scale and weak outliers

in distribution) and empirically via simulation (strong outliers in distribution).

3.4. Empirical bounds for strong outliers in distribution

Recall that while we would like to analytically evaluate the continuously conditional expecta-

tion and variance of TV(x) as utilized in Definition 7, a closed-form expression for the prob-

ability density function of the conditional derived random variable E [TV(X) | kXk= kxk] and

Var [TV(X) | kXk= kxk] for all kXk= kxk remains elusive. Thus, we present a modified, empirical

version of Definition 7 below:
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Definition 8 (Empirical strong outliers in distribution) An observation x is considered to

be an empirical strong outlier in distribution of level k if TV(x) /2
h
cA`,cB`

i
, where:

cA` = bE [TV(X) | kXk= kxk 2 U`]� k

q
dVar [TV(X) | kXk= kxk 2 U`]

cB` = bE [TV(X) | kXk= kxk 2 U`] + k

q
dVar [TV(X) | kXk= kxk 2 U`],

for some k� 0 and empirical bound interval U` computed via Algorithm 1.

Note that we utilize an interval-based estimation scheme to empirically estimate the mean and

variance using � <1 pre-specified disjoint covers
Ṡ�

`=1U` ⌘ [min{kxk} ,max{kxk}] ⇢ R�0. We

propose the following simulation-based method in Algorithm 1 that constructs the bounds from

Definition 8. The workflow of Algorithm 1 is depicted in Figure 2.

Algorithm 1 Computing empirical bounds for strong outliers in distribution
Input: Observations OM ; Number of intervals �; Number of trials T

Output: U`, 8`2 {1, . . . , �}; bE [TV(X) | kXk= kxk 2 U`] and dVar [TV(X) | kXk= kxk 2 U`] , 8 U`

1 Estimate µ̂, ⌃̂,C from OM

2 A C; L D�A

3 for Trial i of 1:T do // Draw T graph signal vector realizations

4 x X
iid
⇠ N

⇣
µ̂, ⌃̂

⌘

5 x max{x,0} // Restrict to non-negative realizations

6 Vkxk,i 
PN

j=1 xj; VTV(x),i x|Lx
7 end

8 �̃ 
max{Vkxk}�min{Vkxk}

�
// Width of intervals

9 U` =
h
min

�
Vkxk

 
+(`� 1)�̃,min

�
Vkxk

 
+ `�̃

i
, 8`2 {1, .., �}

for Interval ` of 1:� do // Empirical interval-conditioned E [TV (X)] and Var [TV (X)]

10 bE [TV(X) | kXk= kxk 2 U`] Mean
�
VTV(x),i | i s.t. Vkxk,i 2 U`

 

11 dVar [TV(X) | kXk= kxk 2 U`] Var
�
VTV(x),i | i s.t. Vkxk,i 2 U`

 

12 end

It is important to note that we only assume that the underlying distribution for X has a well-

defined mean and (co)variance. Thus, Algorithm 1 can be deployed as long as there are su�cient

observations in OM to estimate µ̂, ⌃̂, and C reliably. For the remainder of this paper, the phrase

“strong outliers in distribution” refers to the outliers computed via Algorithm 1. We now apply our

methodological framework to examine the dynamics of airport delays, and highlight the importance

of outlier detection in this context. Even though we focus on the air transportation network, these

methods are broadly applicable to the analysis of data from networked systems.
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TV #

#

$% TV & | & = # ∈ *+

*, *- *.⋯

⋯

$% TV & | & = # ∈ *+ − 1 2Var TV & | & = # ∈ *+

$% TV & | & = # ∈ *+ + 1 2Var TV & | & = # ∈ *+

Figure 2 Empirical strong outliers in distribution bound generating process given simulated observations

(kxk ,TV(x)) generated from
n
µ̂, ⌃̂,C

o

OM

partitioned via
Ṡ�

`=1U` ⌘ [min{kxk} ,max{kxk}] ⇢ R�0.

This approximates the magenta bounds shown in Figure 1.

4. System-wide analysis

In this section, we analyze delays in the aviation network, aggregated over all airlines, to study the

system as a whole. We detail the data setup and processing in Section 4.1, then examine various

spectral properties in Section 4.2. In Section 4.3, we discuss the projection of airport delays into

a 2-dimensional subspace of total delay (TD) and total variation (TV), and discuss our results in

Section 4.5.

4.1. Data setup and processing

We obtain delay statistics from the FAA Aviation System Performance Metrics (ASPM) database

for the time period 2008 to 2017 (Federal Aviation Administration (FAA) accessed 2018). The

analysis is limited to the busiest 30 airports in the US (FAA Core 30); we then compute the total

delay at each of these airports during each day, defined as 0000Z to 2359Z. The total delay at an

airport (i.e., a node in the graph) is the sum of the arrival and departure delays of all flights at

that airport during the day. Consequently, we obtain 3,653 graph signal vectors (each of dimension

30), one corresponding to each day in the data set. The edge weights of the graph are the sample

Pearson correlation coe�cients based on the 10 years of data (Equation (1)). It is worth noting that

all correlations estimated from data are strictly positive, and there is no need for a non-negative

projection as discussed in Section 3. This process results in a graph with 30 nodes,
�
30
2

�
= 435 edges,

and 3,653 instances of delay signal vectors on these nodes.

Figure 3 depicts the resultant correlation matrix as a heat map (Figure 3(a)) and as a geograph-

ical map (Figure 3(b)). Two distinct sub-networks demarcating major East Coast and West Coast

airports can be seen in Figure 3(b), in addition to a smaller sub-network for the Midwest airports

(MSP, ORD, MDW, and DTW) as well. Many airport pairs on the East Coast are connected by

edges with high correlation coe�cients. In other words, when the delay at one East Coast air-

port (e.g., IAD) is high, then it is likely that the delays at other East Coast airports (e.g., DCA,
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BWI, PHL, etc.) will also be high. These relationships are due to heavy tra�c connectivity, geo-

graphic proximity, and a higher likelihood of these airports being impacted by the same disruptions

and tra�c management initiatives (TMIs). By contrast, the two Chicago-area airports – O’Hare

(ORD) and Midway (MDW) – are less than 20 miles apart with no commercial air tra�c operating

between them, and yet have highly correlated delays due to similar weather and TMI impacts. The

correlations between delays are determined by a combination of geographical proximity, airline

operations, scheduling practices, and tra�c flows.

(a)

1.00
0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25
0.00

!"# | %& !"# | %&

(b)
Figure 3 (a) Heat map displaying the delay correlation between the top 30 airports; (b) Correlations shown with

geographical context. Higher correlations are also emphasized with wider lines in (b). Note that HNL

is not shown in (b) for simplicity.

4.2. Spectral analysis

We compute the Laplacian L from the adjacency matrix as per Definition 1, and compute its

eigenvectors (�1 < · · ·< �30) and eigenvector modes (v1, · · ·v30). These eigenvector modes form the

basis for the space of airport delay signals; the eigenvector modes vi corresponding to higher indices

i are said to be more energetic and have a higher TV (Section 3).

Table 1 presents a qualitative description of all the 30 eigenvector modes and their corresponding

eigenvalues, while Figure 4 provides a visualization of the first and last three eigenvector modes.

The key feature of interest in the modes is the sign of the mode at an airport. For a given eigenvector

mode, airports with the same sign contribute in a similar way to the total delay signal. Airports

with a positive component within the eigenvector mode move in the opposite way to airports

with negative components of the eigenvector modes. For example, the v2 mode encodes the delay

dynamics where SFO delays are moving opposite to delays at DFW, IAH, ATL, PHL, and MIA.
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In other words, if the delay at SFO is high, then the delays at the latter group of airports is low,

and vice versa. Note that the most energetic eigenvector modes – the most unexpected modes

– all involve East Coast airports with di↵ering delay trends. As another example, consider the

eigenvector mode v29. It captures very energetic and unexpected delay dynamics where EWR

delays are trending opposite to other New York-area airports (JFK, LGA), as well as other major

East Coast airports (BOS, PHL, and IAD). Recalling the relationships between TV and spectral

energy (Definition 3 and Proposition 1) as well as expected versus unexpected graph signal outliers

(Section 3.3), a qualitative, operational interpretation is that eigenvector modes such as v1, v2, and

v3 are delay dynamics that are more expected, whereas v28, v29, and v30 are rarer, more unexpected

delay dynamics.

!" (constant) !# !$

!#% !#& !$'

(a) (" = 0 (b) (# = 5.04 (c) ($ = 5.42

(d) (#% = 12.03 (e) (#& = 12.27 (f) ($' = 12.67

SFO

HNL

ATL

MIA

PHL
DFW

IAH

LGA

DFW

IAH

SFO

IAD

DCA

JFK
PHL

EWR
BOS

IAD
JFK
PHL

BWI

DCAIAD
EWR

MCO

PHL

1

0.5

0

-0.5

-1

Eigenvector
component

Figure 4 Most (v30, v29, v28) and least (v1, v2, v3) energetic eigenvector modes of the system-wide graph

Laplacian.

As discussed in Section 3, an airport delay graph signal vector for any day can be decomposed

into linear combinations of eigenvector modes v1 through v30. For each day in 2008 through 2017,

we compute the spectral energy contributions of all 30 eigenvector modes, and plot the average

contributions across the entire 10-year time frame in Figure 5. The first mode v1, which is the

constant mode, accounts for 80% of the energy, and we only plot the energy contribution of the

remaining modes v2 through v30. A higher percentage of spectral energy contribution indicates that

a particular eigenvector mode – and hence, a particular delay pattern – contributes more to the

overall delay dynamics of a typical day in the NAS.

We interpret four eigenvector modes with relatively high spectral energy contributions based on

Figure 5. Eigenvector mode v26 (contributing approximately 1.2% of the spectral energy) indicates

that an interesting delay dynamic occurs when the two major New York City airports (JFK and
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vi �i Trend 1 Trend 2
v1 �1 = 0 Constant Constant
v2 �2 = 5.04 ATL, MIA, PHL, DFW, IAH SFO
v3 �3 = 5.42 HNL DFW, IAH, SFO

v4 �4 = 5.67

ATL, BOS, BWI, CLT,
DCA, DTW, EWR, FLL,
IAD, JFK, LGA, MCO,

MIA, PHL, TPA

DFW, IAH, HNL

v5 �5 = 6.29 IAH DFW
v6 �6 = 6.91 DEN, SLC, LAX, PDX, SEA ATL, FLL, MIA, SFO, HNL
v7 �7 = 7.65 MIA, LAX, PDX, SEA MSP, DEN
v8 �8 = 7.87 ATL, DTW, MDW, MSP, ORD MIA, DEN, LAX
v9 �9 = 7.97 PHX, LAS, LAX, SAN MIA, DEN, SEA
v10 �10 = 8.27 ATL, CLT, DEN, LAX, SEA MIA, MDW, MSP, ORD

v11 �11 = 8.48 ATL, MIA, MSP, SLC, PDX
BOS, BWI, DCA, EWR,

IAD, JFK, LGA, PHL, SEA
v12 �12 = 8.71 SLC, LAS, PDX, SAN MSP, DEN, LAX, SEA
v13 �13 = 8.91 MDW, ORD, LAS, SAN MSP, LAX, PDX
v14 �14 = 8.95 MDW, ORD, LAX, PDX LGA, MSP, SLC, LAS, SAN, SEA
v15 �15 = 9.03 LAS, PDX, SAN SLC, LAX
v16 �16 = 9.20 PHX, LAS ORD, SLC, SAN
v17 �17 = 9.84 PHX BOS, ORD, SLC, LAS, LAX, SAN
v18 �18 = 9.89 PHX, ORD MDW

v19 �19 = 10.20 FLL, MCO, TPA
BOS, DCA, EWR, IAD,
JFK, LGA, MIA, PHL

v20 �20 = 10.33 ATL, BOS, DTW, FLL, JFK, LGA CLT
v21 �21 = 10.83 BOS, CLT, FLL, LGA, MDW, ORD DTW, MCO, TPA
v22 �22 = 10.85 DCA, LGA, MCO, TPA BOS, CLT, DTW, FLL
v23 �23 = 11.01 BWI, DCA, FLL, IAD, LGA, PHL BOS, MCO, TPA
v24 �24 = 11.30 BWI, DCA, IAD, MCO, PHL CLT, DTW, LGA, TPA
v25 �25 = 11.35 DCA, IAD, PHL, TPA LGA, MCO
v26 �26 = 11.57 JFK, EWR, PHL DCA, BOS, BWI, IAD, LGA
v27 �27 = 11.71 PHL, MCO DCA, IAD, JFK
v28 �28 = 12.03 DCA, JFK, PHL IAD
v29 �29 = 12.27 EWR BOS, IAD, JFK, LGA, PHL
v30 �30 = 12.67 BWI DCA, EWR, IAD, MCO, PHL

Table 1 Description of eigenvector modes, delay trends (trends 1 and 2 move in opposite directions), and the

airports involved.

DEN, SLC, LAX, 
PDX, SEA
ATL, FLL, MIA,
SFO, HNL

FLL, MCO, TPA
BOS, DCA, EWR,
IAD, JFK, LGA,
MIA, PHL

JFK, EWR, PHL
DCA, BOS, BWI,
IAD, LGA

Figure 5 Average spectral energy across each system-wide eigenvector mode; eigenvector modes v2 through v30

is shown, with the constant mode v1 removed for fair comparisons.
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EWR) along with the close-by PHL have significantly higher or lower delay magnitudes as compared

to the remaining New York airport (LGA) and other major East Coast hubs (DCA, BWI, IAD

and BOS). This disagreement in terms of airport delays not only occurs within a very localized

level (LGA being di↵erent from EWR and JFK), but also at a regional level (New York City

and Philadelphia being di↵erent from Boston and the Washington DC area). Another mode that

accounts for a little over 1.3% of the average spectral energy is v19. This mode describes a similar

pattern as v26, where there are local as well as region-wide disagreements in delay trends. Here,

Florida airports (FLL, MCO, and TPA) have di↵erent delay magnitudes in comparison to several

major East Coast airports and MIA, which is geographically close to FLL, MCO, and TPA.

Two other eigenvector modes that contribute around 1.2% of the average spectral energy are v14

and v11. These modes highlight the need to perform an airline-specific analysis (in addition to the

system-wide studies), since these two modes strongly suggest delay dynamics involving major Delta

Air Lines (DL) hubs. Specifically, we see DL hubs such as LGA, MSP, SLC, and SEA grouped

together in v14, whereas v11 indicate delay dynamics where ATL, MSP, and SLC delays move

opposite to BOS, JFK, LGA, and SEA.

4.3. Evaluation of outliers using total variation and total delay

Recall from Section 3 that TV and TD provide a low-dimensional projection for analyzing multi-

variate graph signals. Figure 6 plots the TV and TD for the airport delay graph signals for each

day in the 2008-2017 data set (3,653 days). The bounds for outliers in scale as well as for the weak

and strong outliers in distribution are computed for level k = 4 and plotted. It is worth noting

that the lower bounds for the outliers in scale and the weak outlier in distribution are negative

and not plotted. This highlights the significant level of conservatism in these bounds in relation to

the thresholds for strong outliers in distribution. The primary factor that makes the weak bounds

conservative is that they are not dependent on the TD, which does not allow them to capture the

increasing variance in the TV for higher values of TD. For further discussions and empirical results

on the gap between the strong and weak bounds, we refer the readers to Gopalakrishnan, Li, and

Balakrishnan (2019). Additionally, the choice of k is important to consider when deploying our

outlier detection methodology. One approach could be to decide on a reasonable value a priori,

as done in other statistical procedures, and continue the analysis. Another approach could be to

choose a k such that small perturbations in k does not result in large changes in outlier populations.

This could be done through examining a plot of the percentage of outliers versus k, similar to an

elbow plot in cluster analysis.

From Figure 6, we observe that 167 days (4.6 % of days) were classified as strong distribution

outliers, 221 days (6.0% of days) were classified as weak outliers in distribution only, no days
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were classified as outliers in scale only, and 14 days (0.4% of days) were classified as both weak

outliers in distribution as well as outliers in scale. Another observation from Figure 6 is that the

TV typically increases with an increase in TD, since the TV is related to individual airport delays

via a non-negative quadratic polynomial. For all subsequent discussions and results in this paper,

we only examine strong outliers in distribution, as it is the tightest in terms of its bounds.

Figure 6 TV versus TD for all days in 2008-2017 with level k= 4 weak and strong outlier bounds demarcated.

4.4. Identifying disruptions for further analysis

A central motivation for our usage of GSP is to characterize di↵ering delay patterns that result

from aviation disruptions. To this end, we would like to analyze the subset of days (data points)

in Figure 6 that experiences a particular type of disruption. Such an analysis would determine if

certain types of disruptions are correlated with an unusually large number of outliers. We use two

independent systems of categorizing disruption days and creating subsets for further analysis. The

first categorization is based on external disruptions, whereas the second is based on delays and

cancellations.

In the first categorization of days, we identified four specific disruptions: nor’easters, hurricanes,

airport or airline outages, and thunderstorms. A total of 178 days out of the 10-year period was

labeled with one of the four types of disruptions (see Table 12 in supplementary materials (SM)

for a list of these dates), and the metrics used for identifying days are as follows:

Nor’easters: Nor’easters are large convective systems that typically impact the East Coast and

are associated with heavy rain or snowfall. These disruptions typically occur between September

and April, are well-predicted a few days in advance, and usually result in severe airport and airspace

capacity reductions. We use the Regional Snowfall Index (RSI) metric (Squires et al. 2014), along



Li, Gopalakrishnan, Pantoja, Balakrishnan: Spectral Approaches for Analyzing Aviation Disruptions
Article submitted to Transportation Science; manuscript no. TS-2019-0414.R1 (Accepted, September 2020) 19

with an estimate of financial damage to identify 60 days in our data set which are a↵ected by

nor’easters (National Weather Service 2019).

Hurricanes: We consider Atlantic hurricanes that primarily impact the southern and southeastern

coastal regions of the US, and the East Coast in rare circumstances. We considered three factors

when selecting our list of 34 hurricane-type days: (1) the Sa�r-Simpson hurricane wind scale

(National Oceanic and Atmospheric Administration 2018b), (2) the geographic region of impact

must include the contiguous US (National Oceanic and Atmospheric Administration 2018a), and

(3) the resultant financial costs (Weinkle et al. 2018). Similar to nor’easters, they are well predicted

storm systems, and impact air tra�c operations for several consecutive days.

Airline and airport outages: Airline-specific and airport-specific outages typically occur due

to equipment failure, and occasionally due to security-related incidents. Some examples of root

causes include power outages that a↵ect an airport, computer or hardware malfunctions a↵ecting

the flight dispatch system of one airline, and outages that a↵ect third-party global distribution

systems and computer reservation systems. These outages are typically localized to one specific

airline or airport, or possibly a group of airlines using the same service provider. We used online

news sources to identify 49 outage-type days (Yanofsky 2015).

Thunderstorms: Unlike the other three types of disruptions, thunderstorms are quite common,

occur over very localized regions (on the order of a few hundred miles), are rapidly evolving, last

only for a couple of hours, and very di�cult to predict. Since there is no standardized way of

locating significant thunderstorm days, we use Ground Delay Programs (GDPs), which is a proce-

dure used to reduce the demand at a↵ected airports, as a proxy of thunderstorm activities. Severe

thunderstorm activity days in summer months are identified using a clustering procedure described

in Gopalakrishnan, Balakrishnan, and Jordan (2016a), then cross-referenced with weather radar

maps to confirm the presence of convective activity (National Oceanic and Atmospheric Admin-

istration 2019). Subsequently, 35 days with severe system-wide disruptions due to thunderstorms

are identified.

In terms of operational performance measures, the amount of flight delay as well as cancellations

are crucial metrics used by airport managers, airlines, as well as ANSPs. This forms the basis

for the second categorization of days. To this end, we use the delay and cancellation clusters to

assign a label indicating the delay and cancellation levels on a day-by-day basis. The clustering

methodology and subsequent mapping into low or high delay and cancellation levels is discussed in

Gopalakrishnan, Balakrishnan, and Jordan (2016a). The four labels that any day can be assigned

to are:

• Low delay; Low cancellation (DLCL): This is the most common type of day (1044 days,

74.7% occurrence) with relatively normal operations throughout the system.
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• Low delay; High cancellation (DLCH): These days (54 days, 3.9% occurrence) are typ-

ically indicative of proactive cancellations by airlines in anticipation of severe disruptions (e.g, a

northeaster snowstorm). The huge reduction in flight volumes provides ample schedule bu↵er and

results in low delays.

• High delay; Low cancellation (DHCL): Such days (170 days, 12.2% occurrence) may be

indicative of an unplanned or poorly forecasted disruption such as pop-up thunderstorms, giving

airlines little chance to proactively cancel.

• High delay; High cancellation (DHCH): The most severe unplanned disruption typically

leads to significant delays and cancellations. These are the days (130 days, 9.3% occurrence) with

the worst system impact.

Figure 7(a) depicts the 178 days classified as nor’easters, hurricanes, airport outages, or thun-

derstorms. Note that we use the same bounds for outliers in scale, as well as the weak and strong

outliers in distribution as Figure 6, since we are still searching for outliers in the context of the

entire system across the 10-year span. Figure 7(b) presents all the days from January 1, 2014

through October 31, 2017 partitioned into one of the four delay-cancellation groups. Because of

limited availability of the complete cancellation data set used for clustering, we are restricted to a

shorter time span. The coordinates of the centroids for each of the subset of the days is also plotted

to provide a high-level overview. The counts for outliers in all these cases, as well as a discussion

and interpretation of the results is presented in the next subsection.

(a) (b)

Figure 7 TV versus TD plot for a subset of days; (a) 2008-2017 with four disruptions, and (b) 2014-2017 with

four system-wide delay and cancellation conditions. The average value (centroids) for each category is

also shown.
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Category Outlier counts %
Nor’easter 17 out of 60 28.3%
Hurricane 1 out of 34 2.9%

Thunderstorm 5 out of 35 14.3%
Outage 2 out of 49 4.1%

Table 2 Outliers for the four types of disruptions

4.5. The role of disruption in spatial delay distributions

We present the strong outliers in distribution statistics for the four types of disruptions (nor’easters,

hurricanes, airline- or airport-specific outages, and thunderstorms) in Table 2, and for the delay-

cancellation subsets (low delay with low cancellation, low delay with high cancellation, high delay

with low cancellation, and high delay with high cancellation) in Table 4.

We see a clear distinction in the occurrence of strong distribution outlier days for the four

disruption categories (Table 2). Taken together, the hurricanes and outages-type days only result

in 3 days out of 83 being strong distribution outliers (3.6%). On the other hand, the system-wide

impact of thunderstorms and nor’easters were higher in terms of unexpected spatial distribution

of delays, and a total of 22 days out of 95, or 23.2% were classified as outliers. This is significantly

higher than the outlier counts for hurricane- and outage-type disruptions. Thunderstorms and

nor’easters are thus correlated with higher TV, higher TD, and more outliers, while airport outages

and hurricanes are correlated with a lower occurrence of outliers.

The low TD and low TV characteristics of hurricane days are interesting and surprising, since

hurricanes are extremely disruptive to the air transportation system. These results indicate that

not only are hurricanes correlated with lower delays, but these delays are also distributed in an

expected manner. This is in direct contrast with nor’easters, which are also very disruptive but

result in higher delays, higher TV, and result in more unexpected distributions of delays. One could

argue that cancellations (Bureau of Transportation Statistics 2015), which are not accounted for in

our analysis, may o↵er an explanation. However, this is not the case. In Table 3, we list the average

cancellation percentages across all days belonging to each of the four disruption categories, includ-

ing the 10-year average, for the entire system as well as the four major airlines. We observe that

hurricanes and nor’easter have comparable system-wide cancellation percentages, but nor’easters

still result in higher delays and TV.

This di↵erence in outlier occurrences may reflect di↵ering operational philosophies when dealing

with irregular operations (IROPS) stemming from each of the four disruption types. Specifically,

hurricanes tend to be well-predicted in terms of its projected trajectory, giving airlines time to

proactively cancel. Hence, we see hurricane-type days not only with low delay, but also expected

distributions of delay. On the other hand, nor’easters may not be associated with airlines canceling
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strategically and e�ciently re-positioning aircraft to enable swift recovery, even though nor’easters

may be well-predicted. This results in higher delays, higher TV, and unexpected distribution of

delays. It is also possible that the regions typically a↵ected by these nor’easters, i.e., the Mid-

Atlantic and New England regions, involve highly congested airports within high-tra�c density

airspace which are already operating at their capacity limits, further exacerbating the problem.

Our data-driven analysis clearly highlights the current challenges faced by airlines regarding proac-

tive management of these nor’easters, and motivates the need to develop sophisticated tools for

disruption recovery and management.

The more spontaneous nature of airport outages do not give airlines the luxury to proactively

cancel, resulting in outage days having more incurred airport delays than hurricane days. However,

since outages tend to be isolated to one particular airport or airline, its e↵ects on the overall spatial

distribution of airport delays within the entire system is limited, thus resulting in low levels of TV.

Lastly, thunderstorms are geographically local and temporary phenomenon. These characteristics

do not a↵ord airlines a long prediction and planning horizon; thus, airlines typically try to operate

through thunderstorms, preferring to incur moderate delays while avoiding cancellations. This

explains the higher TD values associated with thunderstorms. However, since these events a↵ect

only a small fraction of the tra�c at any instant, they do not lead to large-scale changes in the

delay distribution, and hence are correlated with lower occurrences of outliers.

Interestingly, while it seems that nor’easters result in the largest impacts when it comes to the

spatial distribution of airport delays at a system-wide level in comparison to airport outages or

thunderstorms, we will see that this does not hold in the airline-specific analysis (Section 5).

Category System-wide
American

(AA)
Delta
(DL)

United
(UA)

Southwest
(WN)

Nor’easter 7.9% 8.1% 8.0% 8.2% 5.1%
Hurricane 7.8% 7.3% 5.7% 9.6% 6.9%
Outage 2.3% 3.1% 2.5% 1.4% 2.2%
Thunderstorm 2.9% 3.1% 2.0% 1.9% 1.4%
10-year average 1.6% 1.8% 1.0% 1.4% 1.1%

Table 3 Percentage of flights canceled across the entire system as well as for each of the four airlines under

di↵erent disruption categories.

We also observe an insightful relationship that links flight cancellations with strong outliers in

distribution. From Table 4, it is apparent that high levels of cancellation, irrespective of whether it

is associated with high or low delays, is correlated with higher outlier counts. Out of the 1,214 days

with low flight cancellation levels, only 1.5% were outliers; but when the cancellations are high,

almost 22% of the days are outliers. A possible explanation is that when flights are not cancelled,
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Category Outlier counts %
Low delay, low cancellation (DLCL) 12 out of 1044 1.2%
Low delay, high cancellation (DLCH) 12 out of 54 22.2%
High delay, low cancellation (DHCL) 6 out of 170 3.5%
High delay, high cancellation (DHCH) 33 out of 130 25.4%

Table 4 Outliers for the delay-cancellation categories

they typically propagate delays based on their route structure and connectivity, and spread the

delays across the system. While this increases the system-wide delay, it is more homogeneous, and

hence decreases the TV. On the other hand, cancellations isolate parts of the network and prevent

the propagation of delays. This results in significantly lower delays downstream in the schedule,

since the cancelled aircraft cannot complete those routes. Although we caution that further work is

required to ascertain the causal direction of this relationship between cancellations and high TV,

this motivates the usage of flight cancellations as a control action to guide system-wide recovery

towards more expected spatial delay distributions, if such a state is desired.

Note that our cancellation-based analysis is a proxy for various latent operational factors that

could have resulted in or exacerbated an unexpected spatial delay distribution. These include local-

ized disruptions such as pop-up thunderstorms and outages that do not have widespread system

impacts, tra�c management initiatives with an unexpected scope of coverage, or even sudden

demand surges (e.g. additional scheduled flights for certain sporting events) or temporal shifts (e.g.

unscheduled aircraft maintenance). One important way to further this analysis is to examine the

situation from the perspective of individual airline sub-networks. Hence, in Section 5, we present

the spectral analysis, outlier identification, and disruption impact assessment individually for four

major US carrier. We also analyze the complex relationship between the system as a whole in

comparison to the individual sub-networks of these carriers.

5. Airline-specific analysis

Several results in the previous section hint at the necessity to zoom in at an airline-specific level.

First, some of the eigenvector modes focus on hub airports for specific airlines indicating a deeper,

airline-specific e↵ect. Second, disruptions such as thunderstorms or nor’easters tend to a↵ect specific

geographies, consequently impacting some airlines more than others. Finally, even though airlines

may be a↵ected individually, the system-wide view aggregates these variations and does not capture

the subtleties and nuances of airline operations.

We detail the data setup in Section 5.1, the analysis of the spectral modes in Section 5.2, the

identification of outliers using TV versus TD plots in Section 5.3.1, and the comparisons between

system-wide versus airline-specific in Section 5.3.2.
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5.1. Data setup and processing

Since ASPM does not provide airline-specific breakdowns of airport delays, we use publicly avail-

able on-time performance data retrieved from the Bureau of Transportation Statistics (BTS) for

the time frame of January 1, 2008 through December 31, 2017 (Bureau of Transportation Statistics

2015). The data pre-processing involves filtering for flights arriving at, or departing from our Core

30 airport list, aggregating delays over the day, adjusting for multiple time zones, and eliminat-

ing canceled and diverted flights. Finally, we restrict our study to four airlines that all together

account for approximately 79% of departed seats for all domestic US tra�c (Bureau of Transporta-

tion Statistics 2019): American Airlines (AA), Delta Air Lines (DL), United Airlines (UA), and

Southwest Airlines (WN).

For each of the four airlines, we have a corresponding unique non-negative correlation matrix

that serves as the airline-specific adjacency matrix; for brevity, these airline-specific correlation

heat maps are presented in Figures 11 and 12 in SM. Some of these four airlines do not serve all

30 airports during the time frame of our analysis; hence the graphs for WN had 24 nodes (no

operations in ORD, MIA, JFK, DFW, IAH, and HNL), AA and UA have 29 nodes each (no AA

or UA operations at MDW), while DL services all 30 airports. Thus, in our ordered indices i for

eigenvector modes vi and eigenvalues �i, the highest i for AA, DL, UA, and WN will be 29, 30,

29, and 24, respectively.

In AA’s network, we see a fairly uniform distribution of strong correlations mostly focused on

their East Coast hubs (e.g. CLT, DCA, LGA) as well as their hub at DFW. In contrast, the DL

network reflects a much strong presence of airport delay correlations in the East Coast, and is more

similar to that for the system-wide network. UA’s network highlights correlations in the West Coast

and Midwest, centered around SFO, DEN, and ORD. There are also noticeable airport pairs that

have zero correlations, indicating little or non-existent UA operations between that specific airport

pair (e.g. ATL and JFK). Finally, WN has a few airport pairs with high correlations (e.g. TPA-

MCO, DCA-ATL), and no airports with a significant number of high correlation edges incident on

them (except PHX and a few west coast cities to a mild extent). This emphasizes the intrinsically

di↵erent network structure, routing strategies, and tail assignment by WN compared to the other

three airlines.

5.2. Spectral analysis

We plot geographically the most energetic and the second most energetic eigenvector modes for

each airline in Figure 8. Note that comparing eigenvalues across airlines is not meaningful as they

originate from di↵erent graphs Laplacians, but within a particular airline, the eigenvalues retain

the same interpretation of graph “frequencies” as discussed in Section 3.
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Figure 8 Most (�max) and second most (�max�1) energetic eigenvector modes for AA, DL, UA and WN.

At the airline-specific level, we see interesting patterns emerge within the top two highest-energy

eigenvector modes that are not captured at the system-wide scale. For AA, DL, and UA, the most

energetic eigenvector mode depicts a spatial distribution of delay where delays at the corresponding

airline’s largest hub (see Table 8 in SM for annotated table of airline hubs) are not in-sync with

delays at other major hubs for that airline’s sub-network. Additionally, while the eigenvectors for

AA, UA, and WN target their hubs or focus cities, the two most energetic modes for DL involve only

ATL and other geographically proximate Florida airports. This highlights the significant density

of hub operations at ATL by DL, and the relatively small network presence of other DL hubs in

comparison to ATL.

In Figure 9, we plot the distribution of spectral energy across each airline’s eigenvector modes.

Similar to the system-wide case, the constant eigenvector mode (v1) accounts for a large portion of

the average spectral energy (61.1%, 59.4%, 58.1%, and 66.1% for AA, DL, UA, and WN, respec-

tively); we do not show this constant mode in order to highlight the subtleties of the other modes.

The network legacy carriers (AA, DL, and UA) are similar to each other in the sense that their top

eigenvector mode contributes significantly to the spectral energy. In other words, for these carriers,

delays at their largest hubs move opposite to other airports su�ciently frequently so that vmax

contributes to a high percentage of spectral energy. This is in contrast to WN which appears to

loosely follow a power law decay in energy across higher modes, and has higher contributions from

less-energetic modes such as v2, v3, v4, and v5.

For the three network legacy carriers, there are also some lower-energy modes that contain a

high percentage of spectral energy. In particular, these include v6 for AA, v8 for DL, and v11 for

UA. For these three eigenvector modes, they typically involve one or two airports that are hubs

for the specific airline, but also many other airports that tend to be hubs for other network legacy

carriers. Interestingly, we will see in Section 5.3.2 that these lower-energy modes play a dominant

role on days when some airline sub-networks are outliers, but others are not.
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Figure 9 Average spectral energy across each eigenvector mode for all four airlines. v1 is removed for all airlines.

5.3. Total variation and total delay

We analyze delay signals and graph Laplacians that are airline-specific to highlight the di↵erences

between delay dynamics, spatial delay distributions, and response to disruptions by individual

airlines. Specifically, we identify the airline-specific outlier counts for each disruption (Section 5.3.1),

and interpret the relationships between the airline-specific versus system-wide analysis (Section

5.3.2). For the disruption analysis, we consider the same set of 178 days from Section 4.4.

5.3.1. Discussion of airline-specific outliers We first compute airline-specific strong dis-

tribution outlier bounds; the TV versus TD plots with bounds for each airline can be found in the

SM. The empirical strong outlier bounds for AA, UA, and WN are similar, with DL exhibiting

significantly wider bounds. We consistently see that airline- or airport-specific outages and thun-

derstorms have greater e↵ects on the spatial delay distribution of the airline sub-networks than

the system-wide network. Furthermore, while nor’easters had the greatest e↵ect on system-wide

spatial delay distributions, their e↵ect at the airline sub-network level is diminished. While AA,
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UA, and WN disruption centroids were within the empirical strong outlier bounds, the DL cen-

troids for thunderstorms and outages are outside the bounds. This indicates that even an “average”

thunderstorm or outage event typically results in unexpected spatial delay distributions in DL’s

sub-network.

Airline-specific outlier statistics are compiled in Table 5, along with corresponding system-wide

outlier statistics. Summary percentages we quote in this discussion can be computed straightfor-

wardly from Table 5 by conditioning on the appropriate airline. We observe that disruptions a↵ect

airline sub-networks quite di↵erently compared to the system-wide network. For example, an aver-

age of 39% of thunderstorm-type days were strong outliers in distribution for one of the three

network legacy carriers, with DL having over half (51.4%) of its thunderstorm-type days classified

as outliers, whereas only 14.3% of thunderstorm-type disruption days were classified as outliers in

the system-wide analysis. The strong hub-and-spoke nature of these airline operations along with

their routing strategies may contribute to the significant operational impact of transient disrup-

tions such as pop-up thunderstorms. On the other hand, the more point-to-point nature of WN

may explain why only 8.6% of their thunderstorm-type days are classified as outlier in distribution.

Category
(System-wide outlier %)

Airline Outlier counts %

AA 7 out of 60 11.7%
DL 9 out of 60 15.0%
UA 10 out of 60 16.7%

Nor’easter
(28.3% )

WN 8 out of 60 13.3%
AA 0 out of 34 0.0%
DL 1 out of 34 2.9%
UA 0 out of 34 0.0%

Hurricane
(2.9% )

WN 2 out of 34 5.9%
AA 5 out of 49 10.2%
DL 9 out of 49 18.4%
UA 10 out of 49 20.4%

Outage
(4.1% )

WN 7 out of 49 14.3%
AA 10 out of 35 28.6%
DL 18 out of 35 51.4%
UA 13 out of 35 37.1%

Thunderstorm
(14.3% )

WN 3 out of 35 8.6%
AA 292 out of 3,653 8.0%
DL 301 out of 3,653 8.2%
UA 288 out of 3,653 7.9%

10-year span
(4.6% )

WN 355 out of 3,653 9.7%
Table 5 Outlier counts and percentages for each type of disruption and specific airline.

There are also di↵erences in the spatial delay patterns caused by nor’easters at a system-wide

level versus an airline-specific level. On an airline-specific level, we see that an average of 14% of
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nor’easter-type days are classified as an outlier for at least one of the airline, compared to over

28% for the system-wide analysis. At the system-wide level, nor’easters often cause unexpected

spatial delay distributions owing to their propensity to impact the highly correlated East Coast and

Mid-Atlantic region. However, unlike the system-wide case, the eigenvector modes with the highest

spectral energies for airlines (Figure 8) tend to be more geographically diverse. In particular, rather

than concentrating on the East Coast, these energetic eigenvector modes tend to correspond to

AA, DL, and UA’s largest hubs, which are geographically spread out. Furthermore, as discussed

in Figure 9, these high energy eigenvector modes also tend to be frequently triggered.

Finally, outages result in lower system-wide outlier occurrences (4.1%) in comparison to airline-

specific outliers (average of 15.8% of the days). This is because outage events typically involve only

one specific airport or airline that experiences most of the disruptions, with little di↵usion to the

system-wide network. In general, spatial delay distributions within airline sub-networks are more

easily perturbed than system-wide spatial delay distributions; this can be seen in the 10-year span

outlier statistics, where 4.6% of all 3,653 days were outliers in the system-wide analysis, but outlier

percentages varied between 7.9% (for UA) and 9.7% (for WN) when analyzing individual airlines.

5.3.2. System-wide versus airline-specific outliers In this discussion, we connect the

system-wide outlier results from Section 4.3 with airline-specific outlier results. For each day in the

10-year data set, we assign five labels that indicate whether or not the system-wide network and

each airline’s sub-network was classified as a strong distribution outlier. This information can be

represented in the form of a tuple (System-wide, AA, DL, UA, WN), where each entry flags a “⇥”

if the corresponding network is an outlier. For example, the tuple (⇥, , , , ) represents a

day where the system-wide network was a strong outlier, but no airline-specific sub-networks were

outliers. In our 10-year time frame, all 25 = 32 possible combinations had at least one day labeled

as such; we list the tuple statistics in Table 6.

Some of the day-types from Table 6 have interesting operational implications. The first day-

type of interest denotes the case where only one airline’s sub-network has unexpected spatial

delay distributions, but no other airline’s sub-network or the system-wide network is exhibiting

unexpected spatial delay distributions. We see a total of 164 such days for WN, 131 for DL, 103

for AA, and 84 for UA, totaling 482 days out of 3,653 (13.2%). This particular subset of days may

be of interest for airlines, as they represent spatial delay distributions that were likely triggered

by, and remain confined, to their own sub-network.

Another day-type of interest is when exactly one airline’s sub-network is exhibiting unexpected

spatial delay distributions and the entire system is an outlier in distribution as well. These days

can quantify system resilience, since the unexpected delay distributions were not quarantined to
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System AA DL UA WN
Outlier
Counts

%

2817 77.1%
⇥ 164 4.5%

⇥ 131 3.6%
⇥ 103 2.8%

⇥ 84 2.3%
⇥ ⇥ 37 1.0%

⇥ ⇥ 29 0.8%
⇥ 23 0.6%

⇥ ⇥ 19 0.5%
⇥ ⇥ 16 0.4%
⇥ ⇥ 15 0.4%

⇥ ⇥ 15 0.4%
⇥ ⇥ ⇥ ⇥ ⇥ 15 0.4%

⇥ ⇥ ⇥ 14 0.4%
⇥ ⇥ ⇥ 14 0.4%

⇥ ⇥ 13 0.4%
⇥ ⇥ ⇥ ⇥ 13 0.4%
⇥ ⇥ ⇥ ⇥ 13 0.4%

⇥ ⇥ ⇥ 12 0.3%
⇥ ⇥ 11 0.3%
⇥ ⇥ ⇥ 10 0.3%
⇥ ⇥ 10 0.3%
⇥ ⇥ ⇥ 10 0.3%

⇥ ⇥ ⇥ 9 0.3%
⇥ ⇥ ⇥ ⇥ 9 0.3%

⇥ ⇥ ⇥ 9 0.3%
⇥ ⇥ ⇥ 8 0.2%
⇥ ⇥ ⇥ ⇥ 8 0.2%
⇥ ⇥ 7 0.2%
⇥ ⇥ ⇥ 6 0.2%
⇥ ⇥ ⇥ 5 0.1%
⇥ ⇥ ⇥ ⇥ 4 0.1%

Table 6 Counts of the number of days belonging to each of the 32 tuple types.

the sub-network of one airline. On the other hand, days where the system is not an outlier, but

only one particular airline is, are are also worth analyzing. As mentioned in Section 5.2, there is a

pattern of certain low-energy eigenvector modes being triggered for non-outlier airlines during days

when other airlines might be exhibiting unexpected spatial delay distributions. This is highlighted

in Figure 10, where we plot the average spectral energy distribution for days where the system is

an outlier and exactly one of the four airlines is an outlier. We note that when AA, DL, and UA

are not outliers, there is a noticeable increase in the occurrence of eigenvector modes v6 for AA,

v8 for DL, and v11 for UA. Furthermore, all three aforementioned modes for AA, DL, and UA are

triggered when WN is an outlier. The activation of these low-energy eigenvector modes indicate
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interactions between airline sub-networks occurring at shared hub airports. Specifically, unexpected

spatial delay distributions in one airline sub-network partially impact other airline sub-networks

as well.
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Figure 10 Spectral energy averaged across days where only the system and one specific airline (AA, DL, UA,

or WN in (a) through (d), respectively) has airport delays that are strong outliers in distribution

(gray bars). The airline-specific average spectral energy across the 10-year time frame is shown for

benchmarking purposes (magenta bars). Mode v1 is not plotted in order to highlight the other modes

with di↵ering energy scales.
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We discuss a few case studies to illustrate the utility of our spectral analysis. Consider June

2, 2017, a day which was an outlier for AA and the entire system. A slow moving thunderstorm

over DFW impacted operations out of the airport and caused delays. Since DFW is a major and

influential AA hub, it is expected that delays at DFW would result in delays at other AA hubs.

However, on this day, in spite of high delays and cancellations at DFW for AA, it did not spread to

other airports. Thus, it was classified as an outlier for both AA and the system, but not for other

airlines. Another example is September 11, 2017, where DL and the entire system were outliers. On

this day, Hurricane Irma made landfall in the US southeast, resulting in the closure of all Florida

airports as well as heavy flight delays and cancellations out of ATL. This resulted in a situation

where ATL had high delays, but the Florida airports (MIA, MCO, TPA) had no delays due to

airport closures. Given the historically strong correlations between ATL and the Florida airports,

this was an extremely unusual distribution of delay, and thus classified as an outlier for DL. To

add to the unexpected quality of this day, delays did not spread to other DL hubs such as MSP.

We emphasize the need to examine sub-network interactions, as we showed in Table 6 that the

system-wide network is not simply a sum of the four airline sub-networks. This is further evident

from the observation that there are 9 days in which the system is not an outlier but each of the four

major carriers are, and 23 days in which the system is an outlier but none of the airlines are. This

observation motivates future analysis to understand sub-network interactions and their emergent

properties. Finally, the inventory of days belonging to each of the 32 tuple types from Table 6 can

be found in Tables 10 and 11 in the SM.

6. Concluding remarks

In this work, we presented methods to analyze the spatial distribution of signals in networks, and

applied these techniques to study airport delays in the US. Specifically, we formalized and defined

notions of outliers in graph signals, then leveraged GSP to analytically as well as empirically iden-

tify these outliers. Outlier detection and spectral analysis were used to characterize and compare

airport delays at a system-wide and airline-specific level in the US NAS. Our methods enable

the automatic identification of outliers, providing airlines and ANSPs an inventory of days with

unexpected delay distributions for further performance analysis. Such an inventory is essential for

developing playbooks that will mitigate the element of surprise for controllers and flow managers

due to unexpected delay distributions. Furthermore, we emphasize the contextual interpretability

of outliers via the eigenvector modes. Our work presents the first network-wide spectral analysis of

air tra�c delays, outlier detection based on the spatial distribution of delays, and a quantification

of the impacts of various disruptions on the system and airlines.

Our novel spectral-based approach for analyzing airport delays, as well as our outlier identifica-

tion framework lead to several interesting future research directions, including applications of GSP
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and spectral methods to the comparative analysis of di↵erent aviation systems, and the further

development of the theoretical foundations of outlier detection for networked signals.
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Appendix.

We organize the appendix as follows: we present the bounds for outliers in scale (Section A), followed

by the bounds for weak outliers in distribution (Section B). Finally, we present a discussion on evaluating

bounds for weak outliers in distribution where only partial information about the correlation coe�cients (i.e.,

the weights associated with the edges of the graphs) is known, and derive analytical bounds for outliers in

such a setting (Section C). These theoretical analyses and analytical expressions o↵er two critical advantages

over simulations: Firstly, they allow for a parametric study (e.g. with respect to the mean and covariance

parameters) to understand how outlier bounds behave with respect to the underlying probability distribution.

Secondly, there may be an insu�cient number of data observations in OM to reliably estimate the bounds.

A. Bounds for outliers in scale

Our simplification of the 1-norm along with the consideration of only non-negative signals gives kXk =
PN

i=1Xi. The expectation and variance of kXk are:

E [kXk] =E
"

NX

i=1

Xi

#
=

NX

i=1

E [Xi] =
NX

i=1

µi, (7)

Var [kXk] = Var

"
NX

i=1

Xi

#
=

NX

i=1

Var [Xi] +
X

i 6=j

⇢ij�i�j , (8)

where �i and �j are the standard deviations of Xi and Xj , respectively. We can also write Var [kXk] in terms

of the covariance matrix ⌃ as Var [kXk] = 1|⌃1.

B. Bounds for weak outliers in distribution

Since the TV is a random variable that is a function of X, we can write the expression for its mean explicitly

as:

E[TV(X)] =E
"
1

2

X

i 6=j

�
⇢ij(Xi�Xj)

2
 
#
=

1

2

X

i 6=j

�
⇢ij

�
E
⇥
X2

i

⇤
+E

⇥
X2

j

⇤
� 2E [XiXj ]

� 
. (9)

Using E [XiXj ] = µiµj + ⇢ij�i�j (from (2)) and E [X2
i ] = µ2

i +�2
i , (9) simplifies to

E[TV(X)] =
1

2

X

i 6=j

�
⇢ij

⇥
(µi�µj)

2 +(�2
i +�2

j � 2⇢ij�i�j)
⇤ 

. (10)

We can examine a few special cases for the parameters in (10):

1. If the signals are not correlated, i.e., ⇢ij = 0,8i, j 2 V , then the TV is zero.

2. If the signals are perfectly correlated, i.e., ⇢ij = 1,8i, j 2 V , the expectation of the TV is determined by

possible di↵erences in the mean and variance of graph signals at adjacent nodes. Specifically, we have that

E[TV(x)] = 1
2

P
i 6=j {(µi�µj)2 +(�i��j)2}.

3. If the mean for all nodal signals are identical, i.e., µi = µj ,8i, j 2 V , the expectation of

the TV is quadratic in the di↵erences of the variances. Specifically, we have that E[TV(X)] =
1
2

P
i 6=j

�
⇢ij

⇥
�2
i +�2

j � 2⇢ij�i�j

⇤ 
.

4. If the mean, variance, and pairwise correlation coe�cient for all nodal signals are identical, i.e., µi = µj ,

�i = �j = �, and ⇢ij = ⇢,8i, j 2 V , then the expectation of the TV is quadratic in the number of nodes N ,

the correlation coe�cient ⇢, and the variance �. Specifically, we have that

E[TV(X)] =
X

i 6=j

�
⇢�2(1� ⇢)

 
=N(N � 1)⇢�2(1� ⇢). (11)
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We now outline the process for computing the variance of the TV for a random graph signal vector X.

Although we explicitly derive an analytical expression for Var [TV(X)], we only symbolically evaluate it when

needed since the number of terms is extremely large. We rewrite Var [TV(X)] as:

Var [TV(X)] =E
⇥
TV(X)2

⇤
�E [TV(X)]2 . (12)

We have already essentially derived the expression for the second term, since from (10) we have that

E [TV(X)]2 = 1
4

⇣P
i 6=j

�
⇢ij

⇥
(µi�µj)2 +(�2

i +�2
j � 2⇢ij�i�j)

⇤ ⌘2
. The first term representing the expecta-

tion of the square of the TV can be expanded and rewritten as:

E
⇥
TV(X)2

⇤
=

1

4
E

2

4
 
X

i 6=j

�
⇢ij(Xi�Xj)

2
 
!2
3

5 . (13)

Expanding (13) further will produce terms that depend on products of correlated random variables.

Specifically, the expansion will introduce terms of the form E [X4
i ], E [X3

i Xj ], E
⇥
X2

i X
2
j

⇤
, E [X3

i XjXl] and

E [XiXjXlXm] for nodes i, j, l,m2 V . If X is a multivariate Gaussian random variable X= (X1, . . . ,XN)| 2

RN⇥1, where X
iid
⇠ N (µ,⌃) with mean µ= (µ1, ..., µN)

|
2RN⇥1 and covariance ⌃ 2RN⇥N , ⌃⌫ 0, then (13)

can be analytically evaluated through Proposition 2:

Proposition 2 (Isserlis (1918) and Kan (2008)) Suppose X= (X1, . . . ,XN)
|
⇠N (µ,⌃), where ⌃ is an

N ⇥N positive semi-definite matrix. For non-negative integers s1 to sN , we have

E
"

NY
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Xsi
i
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s1X
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, (14)

where s= s1 + · · ·+ sN and h=
�
s1
2 � ⌫1, ...,

sN
2 � ⌫N

�|
.

Proof of Proposition 2. See Kan (2008). ⇤
As we have previously mentioned, due to the large number of terms present in the full expansion of (13), we

do not attempt to analytically simplify it further, but emphasize that it can be symbolically evaluated using

Proposition 2. On the other hand, for our subsequent analyses, we can numerically evaluate Var [TV(X)]

precisely using the analytical expression in (14).

Since we do not have a simplified analytical form for the variance of the TV, it is challenging to make

qualitative comments on how the variance of the TV changes with parameters like ⌃ and µ. However, one

su�cient condition for the TV to be equal to zero is as follows:

Proposition 3 If E[TV(X)] = 0 and ⇢ij � 0, 8i, j (or ⇢ij  0, 8i, j), then Var[TV(X)] = 0.

Proof of Proposition 3. Since we have that ⇢ij � 0, we have that TV(X)� 0 (or if all ⇢ij  0, then TV(X) 0).

Then, E[TV(X)] = 0 =) TV(X) = 0. Hence, Var[TV(X)] = 0. ⇤
Note that E[TV(X)] = 0 is not a necessary condition for the variance of the TV to be 0. Consider the

following example: suppose ⇢ij = 1, µi 6= µj , and �2
i = �2

j ,8i, j 2 V . Then, we have that in general E[TV(X)] =
1
2

P
i 6=j(µi� µj)2 6= 0. However, since we have perfect correlation with di↵ering means, Xi�Xj will always

be constant 8i, j 2 V , and thus Var[TV(X)] = 0.
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C. Bounds for weak outliers in distribution: Partial information case

In Section B, we analyzed the expectation and variance of the TV of a graph signal x assuming that we

had perfect information regarding the strength of the nodal signal correlations ⇢ij . However, in reality it

is possible that we do not know the exact value of ⇢ij , but we do know bounds ⌫ij and ✏ij such that

0 ⌫ij < ⇢ij < ✏ij  1, for all nodes i, j 2 V . This partial information case regarding correlations can happen

in a variety of scenarios; we will describe a few such scenarios. First, due to privacy concerns, nodes in many

physical systems act as independent agents that withhold information from other agents. Thus, each node

may only report the mean and variance of its own signal. In this case, the inter-dependencies and correlations

can only be partially estimated. Another example of the partial information case occurs when we do not know

the underlying Gaussian distribution of the signal, implying that ⇢ij is an unknown parameter. Similar to the

first example, statistical testing may only provide confidence intervals or bounds on pairwise correlations.

Lastly, a small data set, i.e. small M for OM , would result in a gap between the sample correlation and the

true correlation. This gap may be significant depending on M . In this scenario, it may be preferable to use

the bounds on ⇢ij rather than an incorrect estimate to identify outliers.

For the rest of this derivation, we assume that the observations are drawn from a multivariate Gaussian dis-

tribution with a fixed mean vector µ2RN⇥1 and covariance matrix ⌃2 SN⇥N
⌫0 (or equivalently the correlation

matrix C), but the precise value of ⇢ij is unknown. Due to the uncertainty in ⇢ij , we can only provide bounds

on the values of E[TV(X)] and Var[TV(X)]. One could propose that given bounds ⇢ij 2 (⌫ij , ✏ij)✓ [0,1], we

could use simulation to estimate bE[TV(X)] and dVar[TV(X)]. However, we note that such an approach is

computationally intractable in general for the two reasons: first, the number of intervals over which we need

to simulate and evaluate the TV is exponentially large. Specifically, discretizing ⇢ij 2 (⌫ij , ✏ij)✓ [0,1] into N⇢

intervals for each edge leads to NN⇥(N�1)
⇢ evaluations of E[TV(X)] and Var[TV(X)]. A counterpoint may

be that a more coarse discretization scheme might su�ce, or a gradient-based optimization may be able to

guide the exploration of this complex space, or considering just the extreme values of the bounds may su�ce.

This brings us to our second point: the non-monotonic behavior of E[TV(X)] and Var[TV(X)] as a function

of ⇢ij 2 (⌫ij , ✏ij)✓ [0,1]. We provide a small-scale example in Gopalakrishnan, Li, and Balakrishnan (2019)

that highlights the non-monotonicity in ⇢ij of E[TV(X)] and Var[TV(X)]. This behavior is apparent even in

a relatively simple graph with 5 nodes.

Given the various di�culties with evaluating E[TV(X)] and Var[TV(X)] in the case of partial information

regarding ⇢ij , the tight analytical bounds we present in Propositions 4 and 5 for E[TV(X)] and Var[TV(X)],

respectively, o↵er an alternative to the computationally prohibitive exploration of the search space ⇢ij 2

(⌫ij , ✏ij)✓ [0,1] with no reliance on estimation intervals and discretizations. Specifically, our two propositions

quantify the change in E[TV(X)] (Proposition 4) and Var[TV(X)] (Proposition 5) due to the uncertainty in

⇢ij .

For the propositions we construct in this section, we need all the correlation coe�cients to have the same

sign, i.e. all ⇢ij � 0 or all ⇢ij  0, 8i, j 2 V . However, this is not a restrictive assumption; see the discussion in

Gopalakrishnan, Li, and Balakrishnan (2019). We can now redefine the TV for an unobserved X⇠N (µ,⌃)
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with respect to the Laplacian L 2 SN⇥N constructed using OM . Observe that TV(X) is a derived random

variable,

TV(X) =
1

2

X

i 6=j

�
r+ij|OM

(Xi�Xj)
2
 
. (15)

However, in the case where the correlations are only known within some interval, i.e 0 ⌫ij < ⇢ij < ✏ij  1,

we have that:
NX

i=1

�2
i +

X

i 6=j

⌫ij�i�j <Var [kXk] = Var

"
NX

i=1

Xi

#
<

NX

i=1

�2
i +

X

i 6=j

✏ij�i�j . (16)

With these analytical expressions for E [kXk] and Var [kXk], or analytical bounds for Var [kXk] in the case

of partially-known correlations, we can substitute E [kXk] =
PN

i=1 µi along with either Var [kXk] = 1|⌃1+
P

i 6=j ⇢ij�i�j or Var [kXk] 2
⇣PN

i=1 �
2
i +

P
i 6=j ⌫ij�i�j ,

PN

i=1 �
2
i +

P
i 6=j ✏ij�i�j

⌘
into Definition 6, transform-

ing this definition to one that can be used to detect outliers in scale.

Proposition 4 Suppose that 0  ⌫ij < ⇢+ij < "ij  1 for all unique pairs of nodes i, j 2 V . Then, we can

evaluate scalars �1 and �2, with �2 � 0, such that max{0, �1}E[TV(X)]< �2.

Proof of Proposition 4. See Gopalakrishnan, Li, and Balakrishnan (2019). ⇤

Proposition 5 Suppose 0 ⌫ij < ⇢+ij < "ij  1 for all unique pairs of nodes i, j 2 V . Then, we can evaluate

scalars �3 and �4, with �4 � 0, such that max{0, �3}Var[TV(X)]< �4.

Proof of Proposition 5. See Gopalakrishnan, Li, and Balakrishnan (2019). ⇤
Using these two propositions, we can modify Definition 5 for weak outliers in distribution of level k to

include these more conservative bounds:

Definition 9 (Partial information case of Definition 5) An observation x containing bounded partial

information regarding all pairwise correlations, i.e. ⇢ij 2 (⌫ij , ✏ij) ✓ [0,1],8i, j 2 V , is considered a weak

distribution outlier of level k or a weak outlier in distribution of level k if

TV(x) /2
h
max

n
0, �1� k

p
�4
o
, �2 + k

p
�4
i
, for some k� 0. (17)

where �1, �2, �3, and �4 are as defined in Propositions 4 and 5.

The modified Definition 9 of weak outliers in distribution also shows how such bounds can be implemented in

practice to detect weak outliers in distribution. We make some final remarks related to a well-known spectral

bound (Rayleigh quotient) as well as the generalizability of our bounds to other underlying distributions.

Denote �max as the largest eigenvalue of L. Then:

TV(x) = x|Lx �max kxk
2
2  �max kxk

2
1 . (18)

While the Rayleigh quotient is indeed a valid upper bound for the TV of all data observations in OM , it is

loose and does not provide further refinements on the various bounds we propose. Finally, these bounds only

require the underlying distribution to have a finite expectation and variance; there is no explicit dependence

on the underlying distribution being Gaussian.
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D. Airline-specific correlation maps
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Figure 11 Heat maps of the delay correlations between the top 30 airports for AA and DL.
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Figure 12 Heat maps of the delay correlations between the top 30 airports for UA and WN.
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E. Outlier bounds for each airline

Figure 13 AA sub-network: TV versus TD for all days in 2008-2017 with level k = 4 weak and strong outlier

bounds demarcated.

Figure 14 DL sub-network: TV versus TD for all days in 2008-2017 with level k = 4 weak and strong outlier

bounds demarcated.



Li, Gopalakrishnan, Pantoja, Balakrishnan: Spectral Approaches for Analyzing Aviation Disruptions
42 Article submitted to Transportation Science; manuscript no. TS-2019-0414.R1 (Accepted, September 2020)

Figure 15 UA sub-network: TV versus TD for all days in 2008-2017 with level k = 4 weak and strong outlier

bounds demarcated.

Figure 16 WN sub-network: TV versus TD for all days in 2008-2017 with level k = 4 weak and strong outlier

bounds demarcated.
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F. Airline-specific TV versus TD plots of disruptions

Figure 17 TV versus total delay plot for American Airlines (AA) during 2008-2017 with specific disruptions and

their average values annotated.

Figure 18 TV versus total delay plot for Delta Air Lines (DL) during 2008-2017 with specific disruptions and

their average values annotated.
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Figure 19 TV versus total delay plot for United Airlines (UA) during 2008-2017 with specific disruptions and

their average values annotated.

Figure 20 TV versus total delay plot for Southwest Airlines (WN) during 2008-2017 with specific disruptions

and their average values annotated.
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G. Supplementary tables

IATA Code Airport Name ARTCC (Center)
ATL Hartsfield-Jackson Atlanta International Airport ZTL (Atlanta)

BOS
Boston General Edward Lawrence Logan

International Airport
ZBW (Boston)

BWI
Baltimore/Washington International

Thurgood Marshall Airport
ZDC (Washington)

CLT Charlotte Douglas International Airport ZTL (Atlanta)
DCA Ronald Reagan Washington National Airport ZDC (Washington)
DEN Denver International Airport ZDV (Denver)
DFW Dallas/Fort Worth International Airport ZFW (Fort Worth)
DTW Detroit Metropolitan Wayne County Airport ZOB (Cleveland)
EWR Newark Liberty International Airport ZNY (New York)

FLL
Fort Lauderdale-Hollywood

International Airport
ZMA (Miami)

HNL
Honolulu Daniel K. Inouye

International Airport
ZHN (Honolulu)

IAD Washington Dulles International Airport ZDC (Washington)

IAH
Houston George Bush
International Airport

ZHU (Houston)

JFK
New York John F. Kennedy

International Airport
ZNY (New York)

LAS Las Vegas McCarran International Airport ZLA (Los Angeles)
LAX Los Angeles International Airport ZLA (Los Angeles)
LGA New York LaGuardia Airport ZNY (New York)
MCO Orlando International Airport ZJX (Jacksonville)
MDW Chicago Midway International Airport ZAU (Chicago)
MIA Miami International Airport ZMA (Miami)
MSP Minneapolis-Saint Paul International Airport ZMP (Minneapolis)
ORD Chicago O’Hare International Airport ZAU (Chicago)
PDX Portland International Airport ZSE (Seattle)
PHL Philadelphia International Airport ZNY (New York)
PHX Phoenix Sky Harbor International Airport ZAB (Albuquerque)
SAN San Diego International Airport ZLA (Los Angeles)
SEA Seattle-Tacoma International Airport ZSE (Seattle)
SFO San Francisco International Airport ZOA (Oakland)
SLC Salt Lake City International Airport ZLC (Salt Lake City)
TPA Tampa International Airport ZJX (Jacksonville)

Table 7: IATA three-letter code and corresponding full airport
name; the ARTCC that each airport is located within is also listed.
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Airline AA, DL, UA Hubs and WN Operating Bases/Focus Cities
American
Airlines (AA)

CLT, DCA, DFW, JFK*, LAX**, LGA*, MIA, ORD*, PHL, PHX*

Delta
Air Lines (DL)

ATL*, BOS, DTW, JFK*, LAX**, LGA*, MSP, SEA, SLC

United
Airlines (UA)

DEN*, EWR, IAD, IAH, LAX**, ORD*, SFO, (GUM)

Southwest
Airlines (WN)

ATL*, BWI, DEN*, FLL, LAS, LAX**, MCO, MDW, PHX*, SAN, TPA,
(AUS), (BNA), (DAL), (HOU), (OAK), (SJC), (SMF), (STL)

Table 8 List of airline hubs, operating bases, and focus cities. Boldface denotes an airline’s largest hub,

operating base, or focus city by number of departing seats in 2017. (*) and (**) denotes an airport that is shared

as a hub, operating base, or focus city between 2 or 3+ airlines, respectively. Airport codes in parenthesis are

airline-specific hubs, but not part of the Core 30, and thus are not included in our analysis nor defined in Table 7.
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Event Date 1st 2nd 3rd 4th 5th Total Delay Total Variation
(⇥104min) (⇥106min2)

Hurricane 10/28/12 1 (83%) – – – – 1.51 13.58
10/29/12 1 (77%) 2 (3%) – – – 0.89 7.02
10/30/12 1 (77%) 16 (4%) – – – 1.11 12.39
10/31/12 1 (86%) – – – – 1.24 7.90
11/1/12 1 (87%) – – – – 1.45 10.40

Hurricane 8/24/17 1 (87%) – – – – 1.63 10.79
8/25/17 1 (88%) – – – – 1.63 9.32
8/26/17 1 (58%) 4 (18%) 3 (12%) – – 1.39 28.29
8/27/17 1 (74%) 3 (9%) – – – 1.59 18.86
8/28/17 1 (78%) 14 (6%) – – – 1.65 23.57
8/29/17 1 (91%) – – – – 1.50 7.74
8/30/17 1 (91%) – – – – 1.26 4.43

Hurricane 9/9/17 1 (85%) – – – – 1.06 6.18
9/10/17 1 (77%) 19 (6%) – – – 0.96 8.26
9/11/17 1 (47%) 10 (17%) 11 (15%) 8 (7%) – 1.44 62.74
9/12/17 1 (89%) – – – – 1.39 7.78

NAS-wide 1/2/14 1 (68%) 18 (8%) 14 (7%) – – 4.33 254.26
1/3/14 1 (71%) 26 (9%) – – – 4.62 276.30

NAS-wide 1/5/14 1 (78%) 26 (3%) – – – 4.58 171.69
1/6/14 1 (79%) 14 (3%) – – – 3.87 111.53

NAS-wide 6/17/15 1 (67%) 4 (16%) – – – 2.20 47.34
Nor’easter 2/25/10 1 (69%) 6 (5%) 24 (4%) 4 (4%) – 2.29 71.36

2/26/10 1 (60%) 26 (9%) 6 (6%) 29 (5%) 11 (5%) 2.89 180.21
2/27/10 1 (87%) – – – – 1.69 12.45

Nor’easter 1/30/11 1 (87%) – – – – 1.14 5.77
1/31/11 1 (74%) 7 (9%) – – – 1.64 26.59
2/1/11 1 (71%) 5 (9%) – – – 2.83 77.64
2/2/11 1 (72%) 29 (4%) 19 (3%) 26 (2%) – 2.25 61.21
2/3/11 1 (82%) – – – – 1.85 19.08

Nor’easter 2/7/13 1 (80%) – – – – 1.59 18.35
2/8/13 1 (86%) – – – – 1.73 14.88
2/9/13 1 (65%) 26 (12%) 29 (9%) – – 1.50 43.41
2/10/13 1 (75%) 10 (5%) – – – 1.64 25.52
2/11/13 1 (72%) 6 (5%) 19 (4%) – – 2.13 53.19

Nor’easter 2/11/14 1 (89%) – – – – 1.63 10.34
2/12/14 1 (76%) 11 (75%) – – – 2.32 45.86
2/13/14 1 (70%) 6 (5%) 11 (4%) 4 (4%) – 3.48 151.25
2/14/14 1 (86%) – – – – 2.82 37.67

Nor’easter 1/26/15 1 (74%) 4 (4%) 6 (4%) – – 1.94 37.12
1/27/15 1 (83%) – – – – 1.18 10.19
1/28/15 1 (84%) – – – – 1.28 9.25
1/29/15 1 (89%) – – – – 1.50 8.96
1/30/15 1 (79%) 19 (4%) – – – 2.05 36.56

Nor’easter 1/21/16 1 (90%) – – – – 1.72 8.89
1/22/16 1 (80%) – – – – 2.37 38.14
1/23/16 1 (58%) 23 (24%) – – – 1.61 65.48
1/24/16 1 (56%) 26 (10%) 29 (7%) 27 (5%) 6 (3%) 1.85 92.61
1/25/16 1 (68%) 29 (14%) – – – 1.79 53.75

Outage 11/15/12 1 (93%) – – – – 1.55 5.68
Outage 9/26/14 1 (73%) 14 (12%) 2.33 60.16
Outage 9/17/15 1 (80%) – – – – 1.73 20.79
Outage 7/20/16 1 (84%) – – – – 2.05 26.13

7/21/16 1 (77%) 14 (7%) – – – 2.74 62.78
Outage 8/8/16 1 (70%) 11 (14%) – – – 2.72 88.89

8/9/16 1 (87%) – – – – 2.23 21.41
Outage 1/22/17 1 (79%) 10 (5%) – – – 3.09 69.63
Outage 12/17/17 1 (65%) 11 (14%) 10 (13%) – – 1.64 40.85

Table 9 Di↵erent o↵-nominal events; columns “1st” through “5th” contain the highest-contributing

eigenvectors and their energy contribution, in descending order (table modified and adapted from Li et al. (2019)).
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Day-type Dates
1/2/08 12/25/08 8/21/09 7/12/10 4/16/11 12/25/11 11/30/12 8/1/15

1/3/08 12/27/08 8/22/09 8/5/10 4/26/11 12/26/11 12/17/12 8/13/15

1/12/08 1/5/09 10/19/09 8/12/10 5/11/11 12/29/11 12/26/12 9/4/15

1/21/08 1/7/09 10/30/09 9/8/10 7/8/11 12/30/11 1/31/13 10/28/15

2/1/08 1/28/09 11/19/09 9/27/10 7/11/11 1/8/12 8/3/13 11/19/15

2/24/08 2/1/09 11/25/09 10/4/10 7/13/11 1/22/12 8/18/13 1/31/16

2/26/08 2/2/09 12/5/09 10/5/10 7/14/11 1/23/12 10/27/13 3/29/16

3/7/08 2/6/09 12/7/09 10/17/10 7/15/11 3/14/12 11/21/13 6/30/16

5/20/08 2/10/09 12/10/09 10/26/10 7/25/11 3/16/12 1/18/14 7/20/16

6/4/08 2/16/09 12/21/09 11/19/10 8/7/11 5/29/12 2/7/14 7/22/16

6/10/08 3/22/09 1/22/10 11/22/10 8/15/11 6/1/12 4/30/14 9/29/16

6/22/08 3/26/09 2/8/10 12/21/10 8/18/11 7/1/12 5/21/14 10/16/16

7/8/08 4/9/09 3/11/10 1/2/11 8/21/11 8/12/12 8/3/14 1/5/17

7/10/08 4/14/09 3/30/10 1/8/11 8/25/11 8/22/12 9/27/14 2/1/17

7/21/08 5/1/09 4/25/10 2/5/11 8/28/11 8/26/12 10/23/14 5/11/17

9/23/08 5/4/09 5/26/10 2/17/11 9/6/11 8/31/12 11/19/14 9/8/17

11/13/08 5/26/09 6/11/10 2/18/11 9/11/11 9/8/12 11/25/14 9/18/17

11/18/08 5/27/09 6/15/10 2/19/11 10/13/11 9/10/12 12/30/14

11/22/08 6/3/09 6/18/10 2/25/11 10/19/11 9/18/12 6/2/15

12/10/08 8/2/09 6/24/10 3/23/11 11/22/11 11/20/12 7/13/15

0,0,0,0,1

12/15/08 8/19/09 7/6/10 4/13/11 12/21/11 11/21/12 7/18/15

1/16/08 7/30/12 12/17/13 3/21/15 5/10/16 2/12/17 12/9/17

1/19/08 8/9/12 1/7/14 3/27/15 5/28/16 3/2/17 12/13/17

2/17/08 10/22/12 1/28/14 4/6/15 6/21/16 3/10/17 12/17/17

2/27/08 12/24/12 1/30/14 5/26/15 6/24/16 3/24/17 12/23/17

7/31/08 1/13/13 3/26/14 6/9/15 7/2/16 3/28/17 12/25/17

2/7/09 1/24/13 4/7/14 6/24/15 7/18/16 4/3/17

6/30/09 1/30/13 5/27/14 7/21/15 7/26/16 4/7/17

11/3/09 2/11/13 6/10/14 9/10/15 8/9/16 4/8/17

11/27/09 2/26/13 6/14/14 10/24/15 8/10/16 4/9/17

1/16/10 3/13/13 7/27/14 10/29/15 8/11/16 4/15/17

2/23/10 3/18/13 9/23/14 10/30/15 8/14/16 4/20/17

2/24/10 5/17/13 9/30/14 12/24/15 9/19/16 5/6/17

7/13/10 5/26/13 10/14/14 1/6/16 11/15/16 5/21/17

7/23/10 6/5/13 10/22/14 1/7/16 11/16/16 5/22/17

5/26/11 6/8/13 1/6/15 1/9/16 12/14/16 6/3/17

6/15/11 6/13/13 2/3/15 2/4/16 1/8/17 7/11/17

11/25/11 6/28/13 2/9/15 3/1/16 1/9/17 7/14/17

12/22/11 7/17/13 2/16/15 3/4/16 1/14/17 7/17/17

4/9/12 10/18/13 2/20/15 3/10/16 1/21/17 10/12/17

6/16/12 11/1/13 3/1/15 3/24/16 1/29/17 10/29/17

0,0,1,0,0

7/15/12 12/11/13 3/15/15 4/17/16 2/10/17 12/6/17

1/22/08 6/12/10 5/22/12 5/12/14 7/31/15

3/21/08 9/15/10 5/30/12 6/9/14 10/23/15

3/27/08 9/28/10 6/6/12 6/19/14 3/8/16

4/8/08 10/23/10 6/21/12 7/14/14 4/7/16

4/10/08 1/17/11 8/16/12 8/6/14 4/29/16

6/19/08 2/20/11 4/9/13 8/17/14 5/26/16

7/2/08 4/8/11 4/16/13 9/5/14 5/31/16

10/24/08 4/19/11 5/2/13 10/2/14 6/12/16

12/12/08 4/20/11 5/3/13 10/30/14 6/18/16

1/14/09 5/1/11 6/17/13 12/16/14 6/23/16

5/2/09 5/14/11 8/13/13 12/20/14 7/29/16

6/5/09 5/23/11 9/5/13 12/28/14 7/30/16

6/6/09 9/16/11 9/20/13 12/31/14 9/14/16

6/12/09 9/18/11 10/22/13 1/17/15 10/21/16

7/27/09 1/28/12 12/21/13 2/26/15 1/15/17
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Day-type Dates
10/23/09 1/29/12 2/2/14 2/27/15 4/2/17

12/24/09 2/10/12 2/8/14 4/24/15 4/17/17

12/26/09 3/31/12 3/31/14 4/26/15 6/27/17

1/25/10 4/3/12 4/1/14 4/28/15 9/7/17

2/19/10 4/10/12 4/3/14 5/25/15

0,1,0,0,0

3/20/10 5/11/12 4/15/14 6/23/15

2/23/08 11/2/10 6/25/13 6/16/15 7/23/16 5/7/17

9/21/08 11/3/10 7/10/13 6/18/15 9/6/16 5/20/17

1/2/09 5/18/11 7/29/13 7/8/15 10/25/16 5/31/17

1/8/09 6/10/11 9/12/13 8/20/15 10/28/16 6/13/17

2/11/09 6/17/11 10/4/13 10/31/15 11/2/16 6/14/17

2/13/09 6/18/11 7/3/14 11/10/15 11/17/16 6/17/17

6/24/09 8/1/11 8/9/14 11/11/15 12/15/16 7/20/17

10/1/09 12/9/11 9/26/14 12/30/15 1/10/17 7/21/17

1/4/10 7/13/12 12/2/14 2/11/16 2/2/17 7/28/17

3/23/10 8/5/12 12/5/14 4/3/16 2/8/17 8/7/17

5/27/10 9/4/12 1/5/15 5/25/16 3/3/17 8/22/17

8/24/10 12/29/12 1/9/15 6/2/16 4/4/17 9/16/17

9/5/10 5/22/13 2/6/15 6/16/16 4/13/17 10/23/17

0,0,0,1,0

10/15/10 6/23/13 4/16/15 7/8/16 4/23/17 12/15/17

1/5/08 6/16/08 10/2/09 11/20/10 7/19/12 11/23/13 8/15/15 8/4/17

1/25/08 12/11/08 10/15/09 5/16/11 8/10/12 2/28/14 4/2/16 11/26/17

2/6/08 12/16/08 11/7/09 5/19/11 10/11/12 5/13/14 10/14/16

5/9/08 2/17/09 7/4/10 6/11/11 12/21/12 11/30/14 2/20/17

0,0,0,1,1

5/16/08 3/29/09 8/23/10 1/20/12 6/24/13 12/3/14 8/3/17

1/29/08 4/28/08 2/22/09 6/11/09 4/11/10 9/30/10 3/18/11 12/4/14

2/4/08 12/1/08 2/23/09 10/13/09 4/26/10 10/24/10 3/24/11

2/18/08 12/17/08 4/15/09 12/11/09 5/14/10 12/17/10 4/28/11
0,1,0,0,1

3/19/08 12/26/08 5/22/09 1/18/10 7/29/10 12/20/10 12/10/12

6/14/08 1/18/09 1/30/10 5/8/10 7/28/12 2/1/15

6/15/08 2/26/09 2/10/10 7/19/10 1/27/13 1/16/16

8/2/08 3/2/09 2/11/10 1/10/11 2/9/13 1/24/16
1,0,0,0,0

10/25/08 4/13/09 2/26/10 9/29/11 2/17/14

7/6/13 10/31/14 2/19/16 3/31/17 5/1/17 7/24/17 10/19/17

11/17/13 12/18/15 8/13/16 4/24/17 7/10/17 8/18/170,0,1,1,0

2/15/14 1/22/16 3/22/17 4/25/17 7/13/17 10/9/17

1/4/08 6/6/08 3/11/09 4/25/11 3/12/14 6/8/15 12/27/15 12/8/16
0,1,0,1,0

3/20/08 1/15/09 12/8/09 5/6/12 4/9/15 6/17/15 8/12/16 5/3/17

Table 10: Inventory of days belonging to the top 9 most frequently occur-

ring day-type tuples (excluding the no-outlier case).
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Day-type 0,1,1,0,0 1,0,1,0,0 1,1,1,1,1 0,1,0,1,1 0,1,1,1,0 0,0,1,0,1 1,1,0,1,1 1,1,1,1,0 0,0,1,1,1
6/26/09 3/1/09 12/19/08 1/27/08 6/22/09 7/29/09 2/12/08 8/15/08 11/22/13
12/12/10 1/24/10 12/20/08 2/3/08 11/10/11 3/12/10 8/4/08 7/2/09 1/4/14
11/29/11 2/25/10 12/21/08 5/2/08 7/18/12 3/24/13 9/26/08 12/28/10 12/21/15
12/23/12 8/19/11 4/3/09 11/2/08 7/26/12 12/9/14 11/6/08 2/3/14 12/29/15
5/23/13 11/7/12 9/11/09 11/9/08 4/10/13 12/10/14 11/14/08 2/21/15 1/5/16
6/13/14 9/2/13 3/31/11 2/15/09 9/19/13 12/19/14 12/23/08 11/21/15 2/16/16
10/13/14 12/19/13 3/8/13 3/8/09 5/18/15 2/8/15 6/19/09 12/28/15 3/11/16
11/10/14 1/21/14 4/17/13 1/21/10 7/31/16 12/23/15 12/20/09 2/5/16 1/22/17
2/22/15 1/29/14 6/18/14 5/17/11 8/20/16 4/9/16 3/15/10 4/4/16 2/3/17
11/18/15 5/16/14 3/23/15 6/9/11 12/18/16 11/21/16 6/23/10 7/1/16 2/17/17
7/28/16 7/2/14 12/15/15 4/18/13 12/21/16 12/23/16 10/1/10 7/12/17 6/7/17
8/19/16 2/2/16 12/17/16 6/26/13 3/14/17 3/30/17 5/25/11 8/2/17 10/13/17
12/11/16 8/8/16 4/5/17 12/15/14 6/19/17 5/24/17 1/2/14 10/14/17
5/5/17 2/9/17 4/6/17 12/14/15 10/24/17

Dates

12/8/17 9/11/17 6/6/17
Day-type 1,0,0,1,0 1,0,0,1,1 1,1,0,0,0 1,1,1,0,0 0,1,1,0,1 0,1,1,1,1 1,0,1,1,0 1,1,0,1,0 1,1,1,0,1

8/11/08 5/12/08 1/11/08 7/24/08 4/4/08 12/18/08 2/13/14 6/8/08 3/8/08
9/9/08 7/23/08 3/18/08 8/14/08 3/23/13 6/22/12 8/25/14 1/10/09 7/27/08
4/18/09 10/28/08 5/27/08 9/21/09 2/21/14 2/24/16 4/20/15 2/12/09 8/10/08
5/9/10 12/22/08 6/18/08 3/14/10 3/29/14 7/21/16 6/15/15 12/1/10 12/24/08
12/27/10 1/19/09 4/6/09 6/25/12 5/8/14 10/24/16 2/15/16 5/29/11 2/16/10
1/19/12 9/7/11 4/20/09 8/8/14 3/26/16 11/22/16 4/18/16 12/8/13 1/6/14
1/8/15 11/12/12 1/3/10 2/2/15 9/30/16 12/16/16 7/25/16 1/23/16 5/31/15
1/25/16 6/30/14 1/26/11 3/5/15 12/22/16 5/25/17 9/21/16 5/27/16 5/4/16
12/4/16 2/14/16 12/25/12 5/10/15 3/6/17 12/14/17 1/7/17
2/25/17 11/3/17 6/2/17 12/25/16

Dates

7/7/17
Day-type 1,0,0,0,1 1,1,0,0,1 1,0,1,0,1 1,0,1,1,1

2/22/08 1/31/08 7/13/08 2/3/09
11/13/09 2/13/08 8/22/10 1/3/14
1/18/11 11/30/08 10/27/10 1/5/14
1/27/11 4/17/09 6/1/15 2/6/17
8/14/11 6/9/09 2/13/17
10/29/11 3/13/10

Dates

1/1/14

Table 11 Inventory of days belonging to the day-type tuples not captured in Table 10.

Disruption Dates
9/28/17 9/8/17 8/21/17 4/3/17 3/20/17 2/22/17 2/8/17 1/29/17 1/22/17
12/17/17 1/2/17 11/4/16 10/13/16 8/8/16 8/9/16 7/24/16 7/20/16 7/21/16
5/26/16 3/17/16 2/9/16 12/2/15 10/29/15 10/11/15 9/17/15 8/15/15 7/8/15
7/2/15 4/28/15 3/30/15 8/26/08 11/19/09 7/2/09 1/4/10 6/17/11 6/18/11
5/21/11 3/26/11 7/5/11 8/28/12 2/21/12 4/16/13 6/21/13 8/6/13 9/13/13

Outage

9/26/14 9/27/14 11/24/14 4/9/08
2/25/10 2/26/10 2/27/10 1/30/11 1/31/11 2/1/11 2/2/11 2/3/11 2/7/13
2/8/13 2/9/13 2/10/13 2/11/13 2/11/14 2/12/14 2/13/14 2/14/14 1/26/15
1/27/15 1/28/15 1/29/15 1/30/15 1/21/16 1/22/16 1/23/16 1/24/16 1/25/16
11/12/09 11/13/09 11/14/09 12/16/09 12/17/09 12/18/09 12/19/09 12/20/09 3/12/10
3/13/10 3/14/10 3/15/10 3/16/10 12/26/10 12/27/10 12/28/10 1/11/11 1/12/11
1/13/11 10/28/11 10/29/11 10/30/11 11/8/12 11/9/12 12/26/12 12/27/12 3/5/13

Nor’easter

3/6/13 3/7/13 3/8/13 2/7/17 2/8/17 2/9/17
6/23/14 6/24/14 5/15/15 5/16/15 8/7/14 8/8/14 8/9/14 7/6/16 6/24/15
8/20/16 7/12/17 6/18/14 6/19/14 5/12/14 4/9/15 5/20/17 5/21/17 6/3/17
6/4/17 10/14/14 4/7/17 4/8/17 4/30/17 6/13/14 6/19/17 7/13/17 7/14/17

Thunderstorm

8/18/17 8/20/15 5/25/17 6/1/15 6/14/17 6/14/15 6/15/15 6/25/14
10/28/12 10/29/12 10/30/12 10/31/12 11/1/12 8/24/17 8/25/17 8/26/17 8/27/17
8/28/17 8/29/17 8/30/17 9/9/17 9/10/17 9/11/17 9/12/17 9/12/08 9/13/08
9/14/08 9/15/08 10/6/16 10/7/16 10/8/16 10/9/16 8/25/11 8/26/11 8/27/11

Hurricane

8/28/11 8/29/11 8/31/08 9/1/08 9/2/08 9/3/08 9/4/08

Table 12 List of 178 disruption days used in the system-wide and airline-specific analysis.
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