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Abstract— The detection of outliers has become increasingly
important for the control and monitoring of large-scale
networked systems such as transportation and smart grids.
Data from these systems, such as location traces or power
consumption, are collected from individual agents, and are
often privacy-sensitive. Furthermore, the networked nature
of these systems results in the data of different individuals
being correlated with each other. In this paper, we use the
concept of differential privacy to design a privacy-preserving
algorithm for outlier detection in correlated data. We deter-
mine analytic formulas to evaluate the performance of the
proposed differentially private algorithm, and we analyze the
trade-off between privacy level and detection accuracy. We
illustrate our methodology using an example based on outlier
detection in household electricity usage data.

I. INTRODUCTION

The identification of distribution changes in a stream of
data plays a key role in numerous practical settings, such
as fault detection, syndromic surveillance, signal detection,
finance, and security systems. To perform this task, a
metric computed from a sequence of observations must be
consistent with the hypothesis that the data are realizations
of a given distribution. For example, smart home Internet of
Things (IoT) devices may wish to detect outliers in activity
within a home; Public Health Services may wish to detect
a disease outbreak by using individuals’ medical records;
congestion-aware routing applications may want to detect
traffic congestion on roads by relying on location data pro-
vided by smartphones and connected vehicles [1]. In these
scenarios, the data often contains highly privacy-sensitive
information. By using off-the-shelf statistical techniques,
smart meter data can be used to deduce if certain individuals
were at home, or even deviated from their routines [2].
Furthermore, it has been shown that even aggregate location
data can lead to the reconstruction of individual trajectories
[3], [4]. The above observations motivate the development
of privacy-preserving mechanisms for outlier detection.

Anonymization techniques such as k-anonymity [5] or
removing explicitly identifying information from personal
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data are known to be inefficient in preserving privacy [6],
[7]. The notion of differential privacy [8]-[10] provides a
much stronger privacy guarantee to individuals’ data, and
lends itself to several applications [11]-[16]. It provides
each individual agent with the guarantee that the output
of the considered query will not be significantly altered
by whether or not they contribute their data, or what
value they contribute. Differential privacy can be achieved
through input perturbation, output perturbation [11], [17]
or the sparse vector technique [18], [19]. In this paper, we
consider input perturbation, which has the advantage that
each individual agent can perturb its data before sending it
to a data aggregator, thereby eliminating the need to trust
the aggregator.

Classical hypothesis testing under differential privacy
constraints has been previously considered in several con-
texts. Differentially private algorithms for categorical data
that followed a multinomial distribution were considered by
[20] and [21]. In addition, differentially private outlier de-
tection using Monte Carlo (MC) approaches were proposed
in [20], [21], as well as using machine learning-based tech-
niques in [22]. Furthermore, differentially private statistical
tests were studied for the data of individual agents under
a Gaussian assumption in [23] and [24], in order to decide
whether or not the mean of a sequence of independent
and identically distributed (i.i.d.) scalar Gaussian random
variables differed from a given value. However, data from
different agents were assumed to be uncorrelated in these
prior works, which may be an unrealistic assumption in
some systems [12], [16], [25].

Example (Privacy-aware outlier detection in correlated
electricity usage data). Suppose that the agents consist of
individual households in a neighborhood, and that the data
signal contributed by each agent is the per-day electricity
consumption collected via a smart meter. The electricity
consumption of households may be correlated (e.g., because
of similar weather or the similar age of homes); indeed,
such correlations can be observed in Fig. 1.

A data aggregator (e.g., the power company) is interested
in monitoring the smart meter data to detect unusual
patterns (outliers) in observed usage, to determine what, if
any, control interventions are needed. However, potentially
private and identifying information can be discerned from
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Fig. 1. Correlation coefficients for the daily electricity consumption of
20 individual households (REFIT data [26]).

such data [2]. We would like to design a differentially
private mechanism for detecting outliers in correlated data.
Such a privacy guarantee will encourage more households
to participate and contribute their smart meter data, which
can help unlock the full potential of smart grids [27].

Differentially private outlier detection algorithms consid-
ering the Euclidean distance have been proposed in [28].
However, this metric does not account for the correlation
between variables; in fact, it has been shown that correlated
data is excessively weighted when the Euclidean distance
is used for outlier detection [29], [30]. We propose to
overcome this limitation by using the Mahalanobis distance
[31], which adapts the Euclidean distance to account for
correlations between variables.

In this paper, we design and analyze a differentially
private algorithm to detect outliers in multivariate Gaussian
signals using the squared Mahalanobis distance as a metric.
In contrast to [23], [24], [32] where i.i.d. scalar quantities
are considered, we consider multivariate signals provided
by individual agents who may be correlated. Unlike [19]
where the sparse vector technique is used, we consider
scenarios in which individual agents do not necessarily trust
the data aggregator, and therefore we design an input per-
turbation architecture to guarantee differential privacy for
the agents’ data. Using the squared Mahalanobis distance,
we derive analytical formulas for the trade-offs between the
accuracy of detection and privacy level.

Section II presents the problem statement and provides us
with some background on differential privacy and on outlier
detection using the squared Mahalanobis distance. These
results are applied to design a differentially private outlier
detection algorithm in Section III. Section IV provides us
with analytic formulas for probabilities of detection of the
outlier detection algorithm and for thresholds as functions
of user-defined target probabilities of false-alarm. Finally,
in Section IV, we present an application to outlier detection
in a smart metering scenario.

II. PROBLEM STATEMENT
A. Notation

We fix a generic probability triple (Q,.4,P), with A
a o-algebra on the sample space (2, and [P a probability
measure defined on A. We denote the ¢,-norm of a vector
z = (21,...,2,)7 € R by [x], = (X, o) "7,
for p € [1,0¢0]; |-| without subscripts is used for absolute
values. We denote the group of orthogonal n X n matrices
by O (n). Boldface variables denote vectors, and non-
boldface, capital letters denote matrices. Special matrices
such as covariance matrices are denoted by 3. We index
observations by superscripts enclosed in parentheses, and
index components of vectors in subscripts.

B. Outlier Detection in Distribution Problem

Consider a sequence of m observations O,, :=
{x(k)}z;l , with x(®) = [xl(»k)} € R™*1. The vector x*)

contains data from multiple agents at time k, where xgk)

denotes the data for an individual agent 7 at time k. We
observe the data O,, sequentially. The ‘s'ignal vectors x(*)
are assumed to be realizations of X i N (1, %), ie.,
the samples across k are i.i.d. However, the data values of
different individuals (i.e., xz(k) and xg-k) for i # j) may be
correlated.

The first goal is to design a statistical test to check
whether or not an observation x(¥) deviates significantly
from the known historical distribution. We use the follow-
ing quantity as a metric for our task of detecting such
outlying observations:

Definition 1. The squared Mahalanobis distance [31] of a
signal y drawn from some distribution D (p,X.) with finite
mean and variance is

(du(y)? =y —)TE y — p). )

The squared Mahalanobis distance can be viewed as a
measure of the distance between a signal and the underlying
data distribution. It scales each individual agent’s contri-
bution with respect to the variability of its data. Notice
that (dps (x(k)))2 increases with the distance between
x(*) and the mean p. In our setup, we consider x*) to
be drawn from N (u,Y), then x*) — p is a zero-mean
Gaussian variable, and we deduce the following proposition

by applying [33, Section 2.3].

Proposition 1. Let x*) be realizations of X '~ N (p, ¥).

Then, the squared Mahalanobis distance (dM (x(k)))2 de-
fined in (1) is a random variable that satisfies

() ko



where 2 represents a chi-squared distribution with n
degrees of freedom.

Accordingly, we formally define the term outlier in the
context of this article:

Definition 2. An observation x¥) is labeled as an outlier

if
(e (<)) =

where h is a user-specified threshold. Note that a higher
value of h makes the outlier detection more conservative
(i.e., decreases the false alarm rate).

Consequently, the observations in the data set O,, are
mapped to one of the two following hypotheses:

Ho: (dm (x(’“)))2 < h:x® is not an outlier,
Hi: (du (x(’“)))2 > h: x®) is an outlier.

We can then compute the following decision rule:

dec (X(k)) _ )0 %f q (x:;) < h:Hp %s chosen, 3
1, ifgq (X ) > h : Hy is chosen,

where the query q : O,, — R> is the squared Mahalanobis
distance of x(*):

() =)

Rule (3) decides whether or not an observation x(®)
belonging to the data set O,,,, is an outlier. The threshold £,
the mean g, the matrix ¥ and the outcome of the statistical
test (3) are assumed to be publicly known information. In
this article, we consider the case where the entries xék) of
the agents contributing to the dataset are privacy-sensitive,
i.e., the agents want to ensure that sharing the outcome
of the outlier-detection decision rule does not reveal any
information about their contribution to x(*). More formally,
we would like to ensure that O,,, privacy-sensitive data set
with respect to the outlier detection rule. This would require
modifying the outlier-detection decision rule (3) in order to
satisfy this privacy requirement. In the next subsection, we
present a brief introduction to differential privacy, a concept
that formalizes such requirements [9].

C. Differential Privacy

Let H be a space of data sets. Throughout this article,
the space that contains the observation sequence O, is
denoted by H = R"*™. We define a mechanism M
as a random map from H to some measurable output
space. A differentially private mechanism aims to provide
similarly-distributed outputs for inputs that need to be made
indistinguishable [10].

A symmetric binary relation Adj on H, called adjacency,
is used to describe inputs that are considered ‘“close”.
For example, two inputs can be adjacent if the inputs
are the same for all but one individual agent, where that
one agent’s input differs, but the difference is bounded.
More formally, throughout this article, two sequences of
observations O,,, = {x(k)}zjln and O,, = {i(k)}zzn
are termed adjacent if, and only if:

‘xgk) - Egk)‘ <p®, forsomel <k<m, 1<i<n,
0 _ O

j =X

and x i

for alll # k, j # i, (5)
where the set of positive values { p*) }Zzn € R, is given.
In other words, we consider two sequences of observations
to be adjacent if, and only if, they differ only by the value
of a single element xik) within a single vector x(*), and this
difference is bounded as well. We denote two sequences of
adjacent observations O,,, and O,,, by Adj(O,,, O.,).
Next, we formally define differential privacy as estab-
lished by [8], [9]. To do so, we define a new variable

p = max p*) ie., the maximum of the bounds on
1<k<m

differences between adjacent data sets.

Definition 3. Let H be a space provided with a symmet-
ric binary relation denoted Adj, and consider (P, M) a
measurable space, with M a given o-algebra over P. Let
€,0 > 0. A randomized mechanism M from H to P is (e, 0)-
differentially private (for Adj) if, for all Oy, Oy, € H such

that Adj ((’)m, (’)m), and for all sets S in M:
P(M(On) € 8) <P (M (On) €5) +5. (6

In other words, when O,,, and (5m are adjacent, (6) dictates
that the distributions of the random variables M (O,,)
and M ((5m> are close. Next, we define the notion of
sensitivity, which plays a major role in the design of
differentially private mechanisms.

Definition 4. Let H be a space of data sets with
an adjacency relation Adj, and consider P a vector
space with norm ||-||. The sensitivity of a query
g : H — P is defined as the quantity Ap; =
SUP{0,., Gy + Adj(Om, )} [[1(Om) _q(Om)Hp' fn
particular, when P £ R™ (with n = 400 being a
possibility), and given the p-norm for p € [1,00], Ap,
denotes the {y-sensitivity. For brevity, we simply write A,
instead of Ap,.

The Gaussian mechanism [34] can be achieved by
adding Gaussian noise proportional to the {¢s-sensitivity
of a mapping to enforce (e,0d)-differential privacy.



First, the Q@-function [11] is given by Q(z) :=
0o 2
\/%7 fx exp(—*%-) du. Then, for 1 > ¢ > 0, define s, :=

2 (@) + V@ T+ 2).

Theorem 1 (from [11]). Let ¢ > 0, and 1 > ¢ > 0.
Consider a system G : R™ — R"™2. Then, the mechanism
M(y) = G(y) + v, with v a white Gaussian noise
(i.e., sequence of i.i.d zero-mean Gaussian vectors) v ~
N (0,52, (8s(0))?
where I, denotes the na X ny identity matrix, and Ay (G)
denotes the £y sensitivity of G.

n2), is (e, 0)-differentially private,

Differential privacy is “resilient to post-processing”, i.e

manipulating a result that is differentially private does not
weaken the differential privacy guarantee, as long as the
sensitive data is not re-accessed during the manipulation
[10], [11, Theorem 1]. Next, we design a differentially
private algorithm for detection of outliers in our signal
setting with respect to the decision rule (3).
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Fig. 2. Overview of our differentially private outlier detection algorithm
applied to the privacy-sensitive setting of smart meters monitoring house-
hold electricity consumption.

III. DIFFERENTIALLY PRIVATE DETECTION OF
OUTLIERS

By using the resilience to post-processing property, we
deduce from the form of the statistical test (3) that basing
the decision rule (3) on a differentially private version of
q (x(k)) will provide us with a differentially private test.

Theorem 2. A mechanism that publicly releases X*) =
xF) 4 ¢®) with ¢F) ~ N (O,K§’Ep2fn is (e,0)-
differentially private for the adjacency relation (5).

Proof. For two observation sequences O,,, and (5m that are

adjacent with respect to (5), we can bound the sensitivity
as follows:

Ay = sup x — x|,
_ 1<k<m
Om, Om : Adj(onu Om)
where x is a vector-valued signal composed of

1/2
x| .. x(™) and the fo-norm |[s||y = (ZZ; |sk\§)

for a vector-valued signal s. Therefore, we get

m o\ /2
Ay = sup Z ’x(k) — i(k)‘
_ 1<k<m _ 1 2
Oy Oy Ad](0m7 O’nl)
m n )\ 12
(k) _ (k)
= sup ‘xz -z, ‘
O, O : Adj (O, Oy
= p.
The result follows by applying Theorem 1. O

We now consider the statistical test described in Section
IT with a differential privacy constraint. We first compute

qA(X(k)) _ (ﬁ(k) _ H)T (= + K§,€p2In)7l (;i(k) _ ”> ’
(7

x®) 4 ¢® with ¢®)  ~

recalling that X(*) =
) from Theorem 2. Then, we release pub-

N (0,52 o1,
licly

—~ 0, if g(x®) <h:Hyis ch
i (X(k)> _ i q(x( ) h Hy is chosen, ®
1, if §(x™) > h: Hyis chosen,

where % is threshold that is set suitably, independent of

the sequence of observations {x(k)} p—q - With the new
statistical test in (8), we have the followmg corollary:

Corollary 1. The statistical test (8) is (e, d)-differentially
private.

Proof. This can be deduced by applying Theorem 2 and
the resilience to post-processing property of differential
privacy. O



A. Performance Analysis

In this section, we characterize the privacy-utility trade-
off of our privacy-preserving statistical test in (8). For a
given test, we denote the probability of incorrectly ac-
cepting Hy (type II error) by Pry, and the probability of
incorrectly rejecting Hy (type I error) by P;. The following
definitions are needed for the next theorem: Denote the
complementary cumulative distribution function (ccdf) of
the chi-squared distribution with k degrees of freedom
by F(-;k) and denote its inverse, defined on [0,1), by
F (k).

Theorem 3. By selecting the threshold h as
h = F'(Pin), ©

the statistical test in (8) achieves a type I error probability
of Py for each observation x*) € R"*' indexed by k =

1,...,m.

Proof. By applying [33, Section 2.3], we have that the ran-
dom variable ¢ (x(k)) ~ x2. The probability of type I error

of the statistical test (8) is given by P; = P <§ (x*)) > ﬁ)
when X(®) is a realization of a random variable drawn
independently and identically from A (u, 3+ }{g’e p2In)
in (7). Consequently, we have that

Pr=F (?L,n) , (10)

and the result (9) follows directly. O

Next, we derive an analytical formula for the probability
of true detection for the statistical test (8). We denote
by Q(;m;a1,...,an;01,...,Vy,) the ccdf for a weighted
sum of non-central chi-squared random variables with 1
degree of freedom, scalar weights a; through a,, and
non-centrality parameters v through v,. Explicitly, these
random variables are of the form > , aixiw, where
x%yi is a non-central chi-squared random variable with
1 degree of freedom and non-centrality parameter v;. For
tractability, we assume that an outlier is caused by an
additive signal £(*) " A" (s, %) acting on the corre-
sponding input data. For notational brevity, we will redefine
X(k) é Xfl]f))minal + f(k)’ where now Xl(lko)minal ~ N (ll’7 E)’
and f(*) = 0 indicates no additive signal. We note that
when an observation x(*) is an outlier, g (x(*)) is no longer
a x2 random variable. In particular, when an observation
x%) is an outlier, we can construct the symmetric matrix

| °
$® =51, (D412 p70)

eigenvalue decomposition S = PMA®) (PU))T where
A®) — diag (A§’“>, . Ag@) with {\*)}i=1 denoting the

eigenvalues of S*) and P(*) € O (n) an orthogonal matrix.

1
X2, and write down its

Such a decomposition is always possible as S*) is positive
definite. We now provide the following result for the true
positive rate Pp = 1 — Py of the statistical test in (8)
under (e, §)-differential privacy constraints:

Theorem 4. Assume that an outlier is caused by an ad-
ditive signal f®*) BN N (pr,X¢) on each corresponding
nominal input data x . . .. For each data observation
indexed by k = 1, ..., m, a differentially private statistical
test in (8) designed to achieve a type I error probability of
Pr, also achieves a true positive rate of

P
=9Q (ﬁ;n;Aik),-~-,>\5f“);vfk)7--~mﬁ’“)) , (1)

where 'yi(k) denotes the i" component of the vector v*) =

1 ~
(P(k))T Yoy, and his given in (9).
Proof. . When an observation x(*) is an outlier, we have that
X0 N (p+ py, Bg) with S5 = $ + k2 2L, + 2.
For notational convenience, we define > = ¥ + /{%76 p2In.
Then, the privacy-preserving query function Zj(x(k)) can
be rewritten as follows

T~
(<) = ()5 (20
. T 1 1 o~ 1 1o
= (X(k) B “) RIS AR D DR (X(k) - N)
- (guc))T ARIER)

_1
with £€%) = (]?(k))T Yo (X" — w). Consequently, we
have that £(¥) RN ('y(k), LL). Furthermore, by using the
fact that A%) = diag ()\gk), . )\%k)), we get

(<) = 3 (&) erau,
1

1=

with §§k) ~ N (ka), 1) denoting the i component of
£(k), eiT the it standard basis (row) vector of R™, and
1, an n x 1 vector containing all 1. Note that a single

N>
(ék)) is a non-central chi-squared random variable with

1 degree of freedom and non-centrality parameter fyi(k), SO
Zj(x(k)) is indeed a sum of non-central chi-squared random
variables, weighted by el-TA(k) 1,,. The desired result follows
by recalling that Pl()k) =P (qA (X(k)) > ﬁ) when x(*) is an
outlier. O

Unfortunately, the ccdf Q in (11) cannot be expressed in
a closed form, but various series expansions and approxi-
mations can be found in [35]. Next, we derive an analytical
formula for the probability of detection of the statistical test



in (8) when an outlier is caused by a deterministic additive
signal f(*) at each corresponding nominal input data x(*).
Such a situation represents a change in the mean of the
observation, which is ubiquitous when considering the
monitoring and control of large-scale systems [36]. First,
denote the ccdf for a non-central chi-squared distribution
with k£ degrees of freedom and non-centrality parameter A
by T (5K, N).

Corollary 2. Assume that an outlier is caused by a deter-
ministic additive signal £*) on each corresponding nomi-
nal input data xfff’)minal. For each data observation indexed
by k = 1,...,m, the differentially private statistical test
in (8) designed to achieve a type I error probability of P,
also achieves a true positive rate of

P 1B
=*T(ﬁﬂu(waT(E-¥H§49LJ71f®0,

where h is given in (9).

12)

Prooﬁ' When an observation x(*) is an outlier, we have that
gk 11 (u + fB) 2 4 ng’épzln). It can be inferred
from [33, Section 2.3] that (}\(x(k)) ~ Xi’@, where ¢ =

-1
(f(k))T X+ ng,EpQIn) f* and XEW denotes a non-
central chi-squared distribution with n degrees of freedom
and non-centrality parameter . The desired result then

follows by using the fact that that P}” = P (§ (x(*)) > 7)

when x*) is an outlier. O

IV. NUMERICAL SIMULATIONS

We apply our privacy-preserving outlier detection
method to the REFIT data set, which contains aggregate
household electricity usage data sampled at 8-second in-
tervals from 20 houses in the United Kingdom between
2013-14 [26]. For each of the 20 houses, we average the
total energy consumption in watts over a 24-hour period. By
averaging over an entire day, we assume independence be-
tween observations of consumption. For each day indexed

by k, we construct x(F) e R2>OOX1, and collect 255 signals

of daily household consumption into ORFT := {x(*) }:;;n
We define a nominal energy consumption range per house-
hold as an interval of width 6 standard deviations around
the mean, and fit a Gaussian distribution via maximum
likelihood estimation to the consumption subset within this
nominal range. The consumption histograms and best-fit
Gaussian distribution can be seen in Figure 3. From OE;FT,
we then compute prpr and Ygrpr.

We examine the scenario where a deterministic additive
signal £(*) is added to a subset of ORFT, and analyze the
performance of the privacy-preserving statistical test in (8)

using Corollary 2. Such an additive signal could represent
persistent anomalous increases in household energy con-
sumption. For our experiments, the faulty additive signal
(in watts) is f(k) = 150 x 159. Further, we set p = 0.1
and 0 = 0.01 in our experiments. First, we show that the
classification performance deteriorates as more privacy is
required, i.e., ¢ = 0. We fix the acceptable level of type I
error via Theorem 3, vary ¢, and plot the corresponding true
positive rate Pp = 1 — Pry in Figure 4. Note that the true
positive rate approaches 1 for larger e, i.e., less stringent
privacy requirements, and deteriorates for ¢ — 0. This is
expected, since k5 x 1/+/€.

1.0 4

105 10 103 102
€

Fig. 4. True positive rate Pp as a function of ¢ in the setting of Corollary
2 with REFIT electricity consumption data, for fixed outlier thresholds
h = F~1 (Pr;n) and non-degenerate F&) 2 0.

A. Receiver operating characteristic curve

We also characterize the performance of (8) across the
entire range of thresholds h by fixing the desired privacy
level €, varying Py € [0,1], and computing the true
positive rate via Corollary 2. For each fixed ¢, this provides
us with the receiver operating characteristic (ROC) curve
for our private outlier detection algorithm with any given
fixed privacy level. We compute and plot several such
ROC curves in Figure 5, each corresponding to a different
privacy level e. Again, we see that the performance of the
differentially private outlier detection worsens for higher
privacy requirements, as the area under the ROC curve for
€ ~ 0 is nearly half of the € > 0 case.

We demonstrated the privacy-accuracy trade-offs of using
(8) on the REFIT data set of electricity consumption,
i.e., enabling the release of information regarding whether
or not certain daily consumption measurements x(*) &
ORFT were outliers with respect to a historical baseline
distribution N (urpT, ZRFT), While guaranteeing privacy
for each individual household. Analogous trade-offs and
performance analyses can be carried out with a stochastic
additive signal f*) R N (pg,Xy), using the results in
Theorem 4. The privacy-accuracy trade-off is qualitatively



107°

10-° 10-°
2 2
| /\ | | /\
0 0 —/\ 0 0 0
0 1000 2000 0. 1000 0 2000 250 500 0 2000
103 10-3 103 10-3 10-°
: 2
2
2 2
2.5
=
Z 004 r 0 , . 01— . 01— : 01— . :
] 0 500 0 1000 0 1000 0 1000 0 1000 2000
] 10-% . x1073 1073 10~ 1073
< 5
a 2 2
/\ j\ | /\ | J\
0 0 0 0 0
0 1000 0 500 1000 0 2000 0 500 1000 0 1000
103 10-3 103 . %1073 10-3
2 2
2 A ) J\ | J\ A
0= T o 0.0 T T + 04 T T 9 T T 0 T T
0 1000 2000 0 500 1000 0 200 400 0 250 500 0 1000

Daily Household Energy Consumption (Watts)

Fig. 3.

Histograms of daily household energy consumption in watts for the 20 households in the REFIT data set, with best-fit Gaussian distributions

overlaid. Note that houses 1 through 20 are ordered in a left-to-right, top-to-bottom arrangement.

consumption. Future research will consider the application
of the proposed approach to differentially private fault
detection in large-scale control systems with uncertainties.
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Fig. 5. ROC curves for different privacy levels (i.e., different €) corre-
sponding to the setting of Corollary 2 with REFIT electricity consumption
data. Note that these ROC curves correspond to the non-degenerate case

of £(K) £ 0.

similar to that of Fig. 4 and 5, i.e., the deterministic additive
signal case. Thus, we do not include these results in the

paper.
V. CONCLUSION

We consider the problem of designing a squared Ma-
halanobis distance-based algorithm for outlier detection in
correlated data under a differentially private constraint in
this paper. We design an input perturbation architecture to
preserve the privacy of individual data-contributing agents
when detecting outliers, and we derive analytical formulas
for detection thresholds, detection rates, and error rates of
the differentially private algorithm. We then analyze the
trade-off between detection accuracy and privacy level in a
numerical example using a data set of household electricity
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