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Abstract—Outlier detection is a key component of several ma-
chine learning approaches. However, many existing techniques,
especially for multi-dimensional signals, are not interpretable and
do not explain why a specific classification was assigned to a
particular data point. Another limitation is that most methods
only consider the magnitude or intensity of the signal, and
not its spatial distribution. We present a spectral approach to
identify outliers based on the spatial distribution of a signal
across the nodes of a graph without any explicit assumptions
on the underlying probability distribution of the signal. By
applying these techniques to airport delays, we not only identify
outliers in the spatial distribution of delays, but also gain insights
into the delay dynamics. Specifically, we compare spatial delay
distributions in the US and China during the period 2012-17, and
identify several interesting characteristics pertaining to critical
airports for outlier detection. We characterize typical variabilities
in the delay distributions, and the frequency of occurrence
of outliers. Our results highlight the differences between the
operational dynamics of the US and Chinese air transportation
systems, and contribute to performance benchmarking between
different airspace systems.

Index Terms—US/China air transportation, flight delays,
Graph Signal Processing, outlier analysis, aviation disruption

I. INTRODUCTION

Air traffic delays lead to economic losses, environmental
impacts, and customer dissatisfaction. They are a major cause
of concern for airlines, airport operators, and air navigation
service providers. In recent years, vast quantities of aviation
data have been analyzed using state-of-the-art machine learn-
ing techniques in order to address the problems of predicting,
mitigating, and recovering from flight delays and irregular
operations. The focus of our work is to develop specialized
outlier detection methods for multi-dimensional signals which
frequently occur in air transportation. These and other related
methods are an integral part of the statistical analysis and
machine learning workflow in order to understand, assess, and
manage airport delay patterns at a system-wide scale.

Our work characterizes and compares the spatial delay
patterns in the US and mainland China airport networks.
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There are several factors that motivate our choice of these
two regions. In terms of similarities, both networks cover
vast geographical extents; for example, the longest intra-region
flight for both networks is about 6 hours. Both networks carry
a significant volume of passenger and cargo (777 million
passengers in the US [1] and 126 million passengers in
China during 2018), experience severe delays (19.3% flights
delayed in the US [1] and 19.9% in China during 2018
[2]), and have limited strategic measures such as airport slot
controls that mitigate long term demand-capacity imbalances.
There are also significant differences in the rate of growth
(passenger growth of 4.9% in the US [1] and 10.2% in
China [3]), maturity of the infrastructure, seasonal effects and
weather patterns, and air traffic management procedures. For
example, China has a limited number of fixed airways that are
regularly restricted due to military activities [4], [5]. These
similarities and differences provide an interesting opportunity
for comparisons, in particular using data-driven methods to
study the impact of these factors on operational performance.

A. Motivation

Outlier detection is a well-studied problem in statistical
analysis and machine learning. The primary objective of these
methods is to identify whether a data point belongs to a
common group or is an anomalous (or outlier) observation.
This classification into outliers is particularly useful in two
settings. First, pre-processing raw data to remove outliers is
important for algorithms with excessive sensitivity to outliers
in training data (e.g., regression analysis [6], AdaBoost [7]).
Second, in safety-critical applications in which machine learn-
ing models interact with the physical world (e.g. self-driving
cars, autonomous UAV navigation [8]) or face adversarial
inputs, the statistical models may need to be accurate, or
robust to outliers and edge cases. It is desirable for outlier
detection methods to be interpretable, i.e., to be able to tell
why a particular data point was classified as an outlier. All
of this is part of a broader interest in the research community
towards building explainable artificial intelligence systems in



order to improve acceptability and encourage wider adoption
of these methods.

Outlier detection for signals on a graph possesses unique
challenges. In terms of airport delays, this means that we
are considering the delays at different airports in the network
during a fixed time interval as one data point. Traditional
outlier detection methods classify a data point as an outlier
based on the magnitude of these delays, either by looking
at individual airports or the total delay across the entire
system. However, where the delays are spread, i.e. the spatial
distribution of delays across various airports, is not considered
in previous analyses. This means that an interesting and
operationally anomalous class of delay days could not be
explicitly identified. For example, consider two geographically
proximate airports in the New York City region (e.g. LGA and
JFK) that historically have highly correlated airport delays
as they tend to be affected by the same weather systems.
A situation where LGA and JFK experience very different
delay magnitudes is thus unexpected, and may warrant further
investigation. However, this requires firstly the identification
of such scenario, and secondly an interpretation for why this
scenario occurred. The motivation of our work is to formalize
the notion of outliers based on the spatial distribution of a
graph signal, and apply this for airport delay networks to
obtain operational insights.

B. Literature review

We will review and discuss two areas of past research: out-
lier detection methodologies for multi-dimensional or graph-
supported data, and prior aviation studies with international
comparisons.

A classic approach to outlier detection in multi-dimensional
data sets is to assume a statistical distribution for the data, and
identify points that are at the tail(s) of the distribution [9],
[10]. However, in general, estimating such a distribution is
not trivial, especially in large-scale settings such as signals
on graphs with a large number of nodes. Another popular
approach is to cluster the data points, and classify points that
do not belong to any cluster as an outlier [11].

However, a limited number of methods exist that are specific
for graph-supported signals; one example include information-
theoretic approaches [12], [13]. Graph signal processing (GSP)
[14], and specifically the use of the Total Variation (TV) metric
for graph signals have shown promise as a way to capture
the spatial distribution of graph signals [15]. In this paper,
we modify our previous approaches in [16], [17] to identify
outliers in spatial delay distributions while relaxing symmetric
and Gaussianity assumptions on the underlying distribution of
the graph signals. Furthermore, no comparisons between spa-
tial delay distributions in different air transportation networks
were performed in [16] or any other prior work.

Comparative analysis of airport and airspace performance
has received recent attention due to the rapid expansion of
domestic and international aviation in several parts of the
world [18]-[20]. Previous analyses are typically focused on
the connectivity of airports in terms of non-stop flights, or

the nature of historical flight trajectories [4], [21]. Studies
have also analyzed the topology of various air transportation
networks to identify key nodes [22]-[26] and edges [27],
evaluate network stability [28], and characterize the role of
airspace structure on flight conflicts [29]. For a comprehensive
overview of this research direction, see [30]. Our work intro-
duces a novel metric for characterizing spatial distributions
of airport delays, and quantitatively comparing the US and
Chinese airport networks from this perspective.

C. Contributions of work

In this work, we use a novel methodological framework
for identifying spatial delay distributions in airport networks.
We conduct a data-driven comparison of the operational
characteristics of the US and China airspace networks, and
identify outlier test cases that can be used to benchmark and
evaluate machine learning applications. The main findings and
contributions of our work are as follows:

1) Identifying critical subsets of airports. We find that
the delay distributions at a small set of geographically
proximate US East Coast airports are indicative of
whether the system-wide delay distribution is expected
or unexpected. By contrast, such an equivalent set of
airports in China is spread over a large portion of the
Chinese airport network (Section III-B).

2) Variability in spatial delay distributions. The baseline
variability in terms of spatial distribution for delays in
China is higher than in the US (Section III-C).

3) Scale versus spatial delay distribution outliers. We see
that even though the baseline delay magnitudes are
higher in China, the US experiences more outlier days
in terms of delay magnitudes. On the other hand, China
experiences more outliers in terms of spatial delay
distributions, even though it has a higher baseline level
of variability in its spatial delay distribution. In terms of
temporal trends, we find significantly more outliers in
winter months for both China and the US (Section IV).

4) Framework for interpreting outliers. Our final contribu-
tion is a two-step process for interpreting outliers that
considers both the type of outlier and the operational im-
plications. We demonstrate this framework by analyzing
specific outlier days in China and the US. Our analysis
not only identifies the specific airport delays behind the
outlier classification, but also corroborates findings with
operational factors (Section V).

Finally, we emphasize that our methods are broadly applicable,

and can be applied to detect outliers in any graph signal or
multi-dimensional data set.

II. DATA AND METHODOLOGY
A. Graph signal processing
Consider a set with M observations of a multi-dimensional
signal Oy = {xM) x® . xM where x®) =

. T
zgk), xgk), .. ,:L"E\If)} € RN*! represents one such observa-

tion. This signal is assumed to be supported on the nodes of



a graph G = (V, E), where |V| = N is the set of nodes and
FE is the set of edges connecting the nodes. In this paper, the
nodes are airports, and the edges are undirected and weighted
by the sample Pearson correlation coefficient of the signal
between the nodes. The edge weights are represented using
an adjacency matrix A € SV*V where the element a;; is

given by
M k) - k) -
(o ) (7 )

tij = 2 2’
i (=9 ) [ (0 - )

where fi; = & S0, 2" is the empirical mean of the signal
at node i. Note that since the graph is weighted by the
correlation coeffecient and is thus undirected, the adjacency
matrix is symmetric, i.e. A = AT. When denoting a generic
graph signal and not any particular element in Oy, we drop
the superscript (k) for brevity and simply denote it as x.

The combinatorial graph Laplacian is defined as £ =
D — A, where D is a diagonal matrix with d;; = Zj Qij.
Since £ is a row stochastic matrix, we have that 0 is an
eigenvalue, and its multiplicity is the number of connected
components of the graph. Assuming a fully-connected graph,
we arrange the eigenvalues in ascending order without loss of
generality as 0 = A1 < A2 < ... < Ay, and denote their
corresponding orthonormal eigenvectors as {vy, v, ..., 0N}
This set of eigenvectors forms a basis for graph signals in
RN>1: we will refer to this set as the set of eigenvector
modes, or simply modes for the remainder of the paper. Any
graph signal x can be written as a linear combination of these
orthogonal eigenvector modes.

We now define some standard terminology from GSP, a
graph-supported analogue of discrete signal processing:

Definition 1. The Graph Fourier Transform (GFT) of a
signal x € RNM*! supported on a graph with eigenvector
modes {v1,va,...,vy} is defined as (a, g, ..., ay), where
a; = xTv;. It represents the component of that signal along
each of the eigenvector modes.

(D

Definition 2. The spectral energy of a signal x € RV>1 with
GFT (i, qs,...,ay) is defined as (a3, a3,...,a% ). This
implies that the fotal energy can be equivalently written as the

. 2 N 2
sum of the spectral energy components, i.e. ||x||5 =Y., ;.
Definition 3. The Total Variation TV : RV>*1 x RNXN R
metric of a graph signal x with respect to a graph Laplacian
L € RNXN associated with an adjacency matrix A = [a;;] €
RY*N is defined as

1
TV (X,[.‘,) =xTLx = iza”(ﬂil —Ij)Q. (2)
i#j
For notational brevity, we will write TV (x, L) as TV (x)
when the graph Laplacian is unambiguous.

The TV measures the smoothness of the graph signal x; the
higher the TV, the greater the difference in the graph signal
magnitudes across adjacent nodes. Graph signals with a low

TV are said to be smooth. The TV is small when the signals
are relatively the same at adjacent nodes, or the edge weight
connecting nodes with differing signal values are small. Note
that if the correlation between any two nodes is non-negative,
then the TV is also non-negative for any signal x.

Proposition 1. Suppose the GFT of x is (aq, ...
the following two statements are equivalent:
(i) TV (x)=xTLx, and (ii) TV (x) =N, a2\

,an). Then,

Proof. The proof follows directly from the definition of the
graph Laplacian and the GFT. O

Proposition 1 relates the TV of the signal to its GFT and
spectral energy distribution. Eigenvectors corresponding to
lower eigenvalues (recall our ascending ordering of eigenval-
ues, so we can equivalently talk about eigenvalue magnitudes
and their index) are smoother, meaning they have a higher
percentage of their spectral energies in the lower modes, and
consequently a smaller TV. On the other hand, the higher
eigenvector modes represent more energetic signal distribu-
tions, meaning they contribute more to the spectral energy
and result in higher TV. We will refer to these as high-energy
or energetic eigenvector modes. The eigenvalues of the graph
Laplacian are a direct measure of the smoothness of the signal
and determine the contribution of that particular mode to the
TV. Thus, if a signal typically has a greater fraction of its
spectral energy at modes corresponding to a higher index, this
indicates that the signal has higher TV.

B. Delay data and preprocessing

Airport delay data is obtained for the US from the Aviation
System Performance Metrics (ASPM) database maintained by
the Federal Aviation Administration (FAA), and for China
from the Operations Monitoring Center of the Civil Aviation
Administration of China (CAAC). We analyze data from 2012-
17, and restrict the airport network to 30 airports in both cases.
The US airports are chosen based on the FAA Core 30 list, and
for China based on the traffic volume (see Table III and Figure
10 in the Appendix for a list and map of all 30 airports for
both networks). We eliminate cancelled and diverted flights
from both data sets and construct a graph signal of airport
delays for each day in the 5-year period for both countries.
The graph signal at each airport is equal to the total delay
at that airport. The total delay for an airport is defined as
the sum of the mean inbound and outbound delays in minutes
seen at every hourly interval for the day, where a day is defined
as a 24-hour period. After the data preprocessing, we obtain
M = 2,192 graph signals x € R2*" for both networks.

The edge weights a;; in both ‘graphs are computed as the
correlation coefficient between the delay signals at airports via
Equation 1; we use the same graph abstraction in prior work
[16]. We note that all the correlations are strictly positive, thus
both graphs have only one connected component. Hence, the
graph Laplacian will have only one zero eigenvalue, with all
real eigenvectors and eigenvalues. We refer readers to [17] for
a discussion on graphs with mixed and negative correlations.



C. Outlier detection methodology

We now formalize and define our notions of outliers for
graph signals. We define a non-parametric approach based
on the interquartile range (IQR) to define the outlier bounds.
We explicitly account for skewed distributions by adjusting
the bounds based on the medcouple statistic [31], [32]. This
turns out to be critical in our application, where it would
not be appropriate to assume symmetry in the TD or TV
distributions since both are non-negative quantities. Given a
univariate sample set {y1, 92, ..., yx }, we define the value of
its first quartile as (1, the median of the sample set as (o,
and the third quartile value as Q3. The IQR is the difference
between the third and first quartile, i.e. I[QR = Q3 — Q1. The
medcouple statistic is defined as follows:

M=, L, M v @
note that we take a median conditioned on y; < Q2 < yj,
where for all y; # y;, the kernel function h(-,-) is given by:

h(yi,y;) = (y; — Q2) — (@2 yz)_ (4)
Yji — Yi

The medcouple statistic is a robust measure of skewness
[31], and will be used to adjust the IQR in order to form outlier
bounds for asymmetric distributions [32]. In our analysis, all
distributions are skewed to the right, i.e. MC > 0. This is
expected due to the non-negativity of airport delays. Thus, we
only utilize the adjusted box-plot formulas for the right-skewed
case. We refer readers to [32] for the left-skewed case.

For simplicity, we restrict ourselves to the 1-norm of graph
signals when we talk about the TD at an airport. Furthermore,
we assume non-negative signals at each node, which is reason-
able since airport delays are always a non-negative quantity.
Thus, [|x|| = [|x||; = >_, x;. We will use this definition of the
norm of a graph signal vector for the rest of the paper.

The first notion of a graph signal outlier that we will define
identifies outliers in scale, meaning that x is an outlier based
solely on the magnitude of the TD, and not the distribution.
This notion of an outlier is the simplest, most commonly used,
and most intuitive. This definition states that the graph signal is
an outlier in scale if the 1-norm of the graph signal lies outside
a skew-adjusted empirically determined central region:

Definition 4. A data point x is classified as an outlier in scale

(0IS) if
=l ¢ [2, Q]

where the lower bound Q = Q; — 1.5e"**MCYIQR, the
upper bound Q = Q3 + 1.5e3*MCIQR, and the IQR
and MC > 0 are defined on the set of 1-norms VHXH =
Vit =[x Vi = [[xM0]}

The idea behind identifying outliers based on the spatial
distribution of the graph signal relies on the edge weights
being the historical correlations between the airport delays. If
the delays at airport ¢ and ;7 have been historically correlated,
then a;; — 1 and it is expected that on any given day, the
delays at both airports will be high, or the delays at both

airports will be low. This would mean that the contribution
of this airport pair to the TV, a;;(z; — z;)?, will be small
as the difference term would be small. On the other hand,
if the delays are unexpected, meaning that the delays at one
airport is abnormally higher than the other, or vice versa,
the contribution to the TV is large. Now consider the other
extreme, where the historical correlation between an airport
pair is small, i.e. a;; — 0. This means that there is no implicit
expectation regarding relative delay magnitudes between these
two airports, and that one would expect them to vary in an
uncorrelated manner with respect to each other. Thus, even
though the squared difference between their delay signals, i.e.
(z;—x;)? could be high, their contribution to the TV is always
small due to a;; being closed to 0.

This relationship between a;; and (z; — x;)? highlights
the utility of TV as a metric to identify unexpected spatial
distributions of delays across the entire network. When the
TV is low, this implies that the delays are following expected
patterns consistent with historical correlations. On the other
hand, a high TV implies that various pairwise airports that are
historically highly correlated are experiencing delays incon-
sistent with past correlations.

We formalize our first definition that characterizes the
spatial distribution of airport delays based on the TV metric.
Analogous to the previous definition for OIS, we classify a
graph signal as an outlier if its TV lies outside an empirically
determined region based on O,;:

Definition 5. A data point x is classified as a weak outlier in
distribution (weak OID) if

TV(x) ¢ [L, T

where the the lower bound T' = Q; — 1.5e " **MCIQR,
the upper bound T = Q3 + 1.5e3*MCIQR, and the
IQR and MC > 0 are defined on the set Vryx) =
Vrviga = xBLxW 0 Vg = xMDTLx (D],

OIS bounds

2
|
|
|

TV(x)
Weak OID
bounds

[1ll
Fig. 1. Depiction of the various outlier detection bounds.

A concern with this characterization of outliers in distri-
bution is that it does not account for the inherent quadratic
relationship between the TV and the TD (see Definition 3).
This means that as the TD increases, the TV also increases,
and the notion of what is expected or unexpected in terms of
TV changes based on the TD. It for this reason that we refer
to the previous definition of outliers in distribution as weak,
and we propose a more practically relevant, tighter definition
for strong outliers in distribution:



Definition 6. A data point x is classified as a strong outlier
in distribution (strong OID) if

TV(x) ¢ [©, O]
where the lower bound © = Q —1.5¢=**MPIQR, the upper
bound © = Q3 +1.5¢**MCTQR, and the IQR and MC >0
are defined on the (sub)set Vrv)| x| € Vrivix)-

By conditioning on the magnitude of the TD, the outlier
bounds for strong OID eliminate the effect of scale, and iden-
tifies outliers solely based on the relative spatial distribution of
delays on the graph. Figure 1 summarizes the three different
outlier bounds from Definitions 4, 5, and 6.

Algorithm 1 Computing strong OID bounds
Input: Minimum bin size n; TD set Vx; TV set Vry(x)
Output: Outlier bound bins f]gux“; Upper outlier bound ©;
_ Lower outlier bound ©
1 Vx| « Sort V)i s.t. Vx|, < Vix),5,Vi < j and 7,7 €
{1,...M} x{1,..., M}

2 LBy < { Ve | i € {1, omin {M,1+ 2] +n}}}

3 Amax ¢ max; {Vuxu,i+1 = Viixls

4 for Lower bound index 115 = 1 : LBHxH| do
5 if iLp < |LB|y)| then
6 4y <= LBy, ly = LBy ipg+1

] LB
7 Yﬁ‘/]&) +— Vrvix,i ’Eb <Vrvix)i < lu}
8 LB x|ies < 3 (LBjxlins + LBjx|,is+1)
9 else
10 by < LBx i n
1 Yﬁ‘/]&) +— Vrvix),i ’Eb <Vrvx),i}

1

12 LBjx|ip < 3 (LBjx|,ins + max{Vx})
13 end
y { wn. ;LB} - {Q1 of VLB, | Qs of v;gg()}

15 IQR™B QB — QLB

16 MCtB « compute medcouple for
17 if MC'B > 0 then

18 0" « QLB + 1.5 (IQR™B) exp (3 x MC'LB)
19 0B « QLB —1.5 (IQR™B) exp (—4 x MC'LB)
20 else

LB
TV(x)

0" QB 1+ 1.5 (IQR™®) exp (4 x MCtB)
0'LB +— Q1B — 1.5 (IQR™B) exp (—3 x MC'-B)

21
22
23 end
24 end

25 LBHXH < LB”x“’l’W’LB|\XH7|LB||x|\{}

% 0« {51,...75’1“]3”"”!}; O « {Q17,._,Q|LB||xu}}

In practice, due to a finite number of data points in Oy,
it is not possible to condition exactly on ||x||. Hence, we
compute a relaxed, discretized bound instead. Algorithm 1
describes the steps required to compute the discretized bounds

=~ ~

0,0 ¢ for strong outliers in distribution. The idea behind
Algorithm 1 is to condition the TV on a discrete interval
around ||x||, rather than a particular value for the 1-norm.
To obtain robust estimates, we dynamically vary the interval
widths to ensure an equal number of data points n in each
interval, with the possible exception of the last bin. The TV

of each data observation within the (sub)set that falls into
a particular interval is used to compute the IQR and MC,
then the outlier bounds for that particular interval. Finally,
the output from Algorithm 1 is linearly interpolated for points
between the discrete bins, and extrapolated at the edges till the
boundary data points. This process is illustrated in Figure 2.
The discretized estimates of the strong OID bounds converge
to the actual bounds as the number of data points increases and
the maximum bin width A, (see Algorithm 1) decreases, i.e.

{6.6} - {®.0}.

lim
|O1\4 |—>OO
Apax—0

We emphasize that our approach does not assume any
underlying distributions for the graph signals, the TV, or
the conditional distribution of the TV. In addition, we also
explicitly consider the skew of these empirical distributions,
and the practical challenges associated with estimating robust
bounds from a possibly small, finite data set Op;. In the next
two sections, we present our findings obtained by using GSP
spectral decomposition techniques, as well as our outlier de-
tection methods, to the US and China airport delay networks.

III. SPECTRAL ANALYSIS OF THE NETWORKS

In this section, we analyze the US and China airport delay
correlation networks, the eigendecomposition of their graph
Laplacians, and the average spectral energy distributions. We
will highlight how the eigenvectors of the graph Laplacian
complement common operational knowledge about airport de-
lay patterns in the US and China. Furthermore, the associated
eigenvalues and spectral energies enable a comparison of the
spatial variance of delays observed in the Chinese airport
network versus the US.

A. US and China correlation networks

We plot in Figure 3 the correlation coefficients for our
network of 30 Chinese and US airports, computed from the
5-year data described in Section II-B. The resultant correlation
network for China shows a much larger subset of airport
exhibiting high pairwise correlations in terms of their total
delay time series. This is in contrast with the US, where there
are two distinct airport subsets with correlation coefficients
higher than the rest of the network — East Coast airports,
and to a lesser extent, West Coast airports. Typically, these
high correlations are due to geographic proximity which
leads to common weather impacts, combined with operational
factors such as traffic flow and airline hub characteristics. For
example, airport pairs such as ORD-MDW (US) and SZX-
CAN (China) do not have any traffic flows, but are collocated
in the same metroplex area, thus resulting in high correlations.
On the other hand, the delay correlations at airport pairs such
as SHA-SZX and BOS-LGA are influenced more by the high
volume of shared traffic flows rather than geographic factors.

These correlation networks indicate that, compared to the
US, the Chinese network has a larger and more geographically
diverse set of airports whose delays are closely coupled. We
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Fig. 2. Illustration of the end-point interpolation scheme used to extend the strong OID bounds {f]g”xu, {@), @ }} retrieved from Algorithm 1.
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Fig. 3. Airport delay correlations shown with geographical context for the (a)
Chinese and (b) US airspace. Higher correlations are also emphasized with
wider lines. Note that HNL is not shown in (b) for simplicity.

explore this further in the next subsection by interpreting the
eigendecomposition of the graph Laplacians corresponding to
these correlation networks. The resultant eigenvector modes
help us in identifying specific groups of airports which con-
tribute to unexpected delay distributions.

B. US and China eigenvector modes

Recall that the eigenvector modes allows for the decomposi-
tion of any airport delay signal vector into linear combinations
of these modes, where higher-indexed modes (corresponding
to larger eigenvalues) are more “energetic” and result in higher
TV. We order the set of 30 eigenvalues for China and the
US airport network in ascending order according to their
magnitude; thus, Figure 4 provides a geographic depiction of
the top 5 most energetic eigenvector modes for both networks.

Eigenvector modes have interesting operational interpreta-
tions based on the sign of each of the 30 components in v;.

In Figure 4 we represent positive components in blue and
negative components in red; the important characteristic is the
difference in signs between two or more airports, not so much
the sign of an airport itself, since any scalar multiple of the
eigenvector is also an eigenvector. For example, in mode va7
for China, the signs on NKG and TYN are the opposite of TAO
and FOC. This mode portrays a scenario where airport delays
at NKG and TYN are decreasing, and airport delays at TAO
and FOC are increasing, or vice versa. This point regarding
comparing different signs, and not the sign of one particular
airport, is crucial to keep in mind for the rest of this paper.

Visually, the most energetic eigenvector modes of China are
significantly different from those of the US (see the top and
bottom rows in Figure 4) in terms of the geographic extent
of the highlighted airports. Most of the airports in China are
widely distributed across the eastern part of the country. With
the exception of PEK in mode vo9 and SXZ in vsg, none of the
airports in these high-energy modes are ranked in the top five
airports in terms of traffic volume. Furthermore, there is only
one high energy (and thus, high TV) mode in China (v2g)
where geographically proximate airports (XMN and FOC)
are experiencing opposite delay trends, whereas this scenario
occurs for all US eigenvector modes.

It is interesting that our data-driven delay analysis identifies
the same airports from another study that identified critical
airports for system resilience [26]. Note that such a list of
airports is different from those arising out of studies on
operational dynamics or traditional network measures such as
degree and betweenness centrality. In particular, FOC has low
traffic volumes (ranked 27™ in 2018), and is not considered to
be a central airport in terms of its connectivity. However, it is
determined to be critical in a simulation-based study [26] that
quantify the resilience of the system. Analogously, our GSP
analysis based on empirical data also identified FOC in four of
the five high-energy modes as a crucial airport in determining
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Fig. 4. Top 5 most energetic eigenvector modes (i.e. v2g through v3p) of the graph Laplacian for China (a)-(e) and the US (f)-(j).

whether the system-wide delay distribution is expected or not.

Furthermore, the high-energy US modes involve airports
within the same multi-airport system having opposing delay
trends; for example, LGA and JFK in New York City have
opposing delay trends in vsg. This is not the case in China;
for example, the two Shanghai airports (PVG and SHA) never
have opposing delay trends in the high-energy modes.

For the US, we see that the most energetic eigenvector
modes correspond to cliques of East Coast airports with delays
trending opposite to each other. These include airports serving
the same metropolitan area having opposing delay trends;
examples of this include modes vo7 (IAD versus DCA), vag
(JFK and LGA versus EWR), and v3g (IAD versus BWI).
Even if one of these modes has a high spectral energy on
a given day, we expect a higher TV for that day due to the
large eigenvalues associated with these modes (Proposition 1).
Going one step further, we note that for the US, checking
whether the delay distribution of the system is expected is
approximately equivalent to checking if the delay distributions
in the East Coast are expected. Similarly, it is likely that the
system is an outlier in distribution if the East Coast airports
experience an unexpected distribution of delays.

While it may be sufficient to primarily monitor a geograph-
ically localized subset of airports in the US to analyze the spa-
tial delay distributions, the same cannot be said for the China
airport network. We see a lack of geographic consistency in
the airports highlighted by the five most energetic eigenvector
modes for China. In particular, for China we see airports as
far north as TYN and PEK appearing in some of the modes,
along with airports in the southeast such as XMN and FOC.
Although this is expected given the correlation networks for
the two countries (Figure 3), the eigenvector modes provide
specific cliques of airport that cannot be identified through
a simple ranking of correlation coefficients, since these are
inherently limited to pairwise interactions.

C. US and China spectral energies

The eigenvalue coresponding to an eigenvector mode is a
measure of the “frequency” of this mode, whereas its spectral
energy — specifically, the percent contribution of its spectral

energy to the spectrum for an average day, averaged over the
entire 10-year data set — is a measure of its contribution, or im-
pact within the network. We plot these two quantities in Figure
5 for both the US as well as the Chinese network. We observe
a clear distinction in the magnitude of the eigenvalues between
the two countries. The average magnitude of US eigenvalues
is 9.17, and they are lower than all but one eigenvalue from the
China airport network. The average magnitude for the Chinese
eigenvalues is 16.93, indicating that the average TV of delay
signals in China is significantly higher than the US.

The differences in terms of the spectral energy distribution is
less pronounced between China and the US. More than 80%
of the average spectral energy is contained in the constant
mode for both countries (80.92% for the US and 87.87% for
China) due to the fact that typical days in both networks
do not experience significant disruptions and/or unexpected
spatial distributions of delay. Hence, we remove this constant
mode for a more nuanced comparison between the more
operationally interesting modes wve through wvsp in Figure
5. We also note that in the China airport network, there
appears to be a couple of modes that dominate the average
eigendecomposition, whereas the distribution is more even in
the US.
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eigenvalue for the airport delay graph of US and China (CN).



IV. OUTLIER ANALYSIS
A. Identifying outliers using total variation and delay

For each day with an associated airport delay graph signal
x, we can compute the TD and TV, and visualize it as a
point (||x]|, TV(x)) on a TV versus TD plot. Using the skew-
adjusted IQR method for detecting outliers detailed in Section
II, we evaluate the outlier in scale (OIS), weak outlier in
distribution (OID), and strong OID bounds for the China and
US airport networks. We present the TV-TD plots for China
and the US in Figure 6, with OIS, weak OID, and strong OID
bounds demarcated.

Note that the observed delay within the China airport net-
work is higher than the US, resulting in a significantly higher
TV for China due to the quadratic-dominated relationship
between TD and TV. However, since the outlier bounds are
trained with respect to each country’s data, the outlier statistics
can be compared across the two countries. We summarize the
outlier statistics in Table I. We observe that in terms of the TD,
which is the simplest measure of the severity of a disruption,
the number of OIS in the US is higher than in China. This
indicates that even though the TD may be higher on average
for China compared to the US, there are more days in the
US where the TD was unexpectedly high or low. The statistics
for OID highlight the importance of using the strong OID
in lieu of the weak OID definition. While the US has more
weak OID than China, the reverse is true when the strong
OID bounds are used, which takes into account the fact that
TV grows quadratically with TD. The weak OID is thus not
a very reliable metric to identify spatial distribution outliers,
and its conclusions may even be contrary to ones obtained
from the strong OID definition. We conclude that the Chinese
airport network not only incurs more delays than the US, but
the delays also tend to be spatially distributed at unexpected
sets of airports. Given the lack of geographic consistency in
the higher-energy eigenvalue modes for China, this indicates
that the unexpected spatial delay distributions are also likely
to be geographically dispersed throughout the country.

Outlier Type China | US

OIS 19 34

Weak OID 16 30

OIS & Weak OID 5 8

Strong OID 103 73
TABLE 1

NUMBER OF OUTLIER DAYS OUT OF 2,192 DAYS (2012-2017) FOR CHINA
AND THE US, CATEGORIZED BY OUTLIER TYPE.

B. Monthly distribution of outliers

We plot the total number of strong OID days in each month
for China and the US in Figure 7 to analyze seasonal and
temporal patterns. While one might presume that there are
more unexpected spatial delay distributions in the summer due
to disruptions such as thunderstorms, we found that May, June,
and July actually contain the least number of strong OID days
for both countries. The temporal distribution of outliers from
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Fig. 6. TV versus TD for all days in 2012-2017 for China (a) and the US
(b), with outlier in scale (OIS) and distribution (OID) bounds marked.

Figure 7 suggests that unexpected spatial delay distributions
are much more common in the winter, at least from a system-
wide perspective for both countries.

Nor’easter snowstorms and significant cancellations during
the months of December through March contribute to a higher
occurrence of strong OID days in the winter for the US.
Similarly, for China, meteorological factors such as fog and
snowstorms lead to significant unexpected delay distributions
in the winter months. Additionally, trends in consumer pref-
erence also appear to play a major role. The large number of
outliers in October are particularly clustered around the first
week, which is a week-long national holiday in China (Golden
Week). A surge in aviation demand during this travel season
may be a contributing factor for the occurrence of a large
number of strong OID days. Finally, we would like to point
out that seasonal effects are more pronounced in China than
the US, indicating more volatile, unpredictable, and weather-
sensitive operations in China. This may be a consequence of
the high-growth phase of the Chinese aviation market. Our
analysis would help policymakers and system managers to
identify these specific instances of unexpected patterns, and
direct their efforts towards reducing their occurrence.
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V. INTERPRETABILITY OF OUTLIERS
A. Framework for interpreting the outliers

We emphasized that one advantage of our methods is the
ability to provide interpretations at multiple stages of the
outlier classification process. In this section, we present a
framework for outlier interpretability, and then illustrate its
applicability by providing interpretations for why a particular
set of days were classified as strong OID.

Our interpretation framework can be thought of as a work-
flow that we visualize in Figure 8. Note the dual layer of
interpretations available through this framework: The first
layer of interpretability distinguishes between different rypes
of outliers, i.e. strong OID versus OIS. We do not interpret
weak OID days, as we previously demonstrated the tighter
performance of strong OID bounds. The second layer of
interpretability allows for operational insights to be derived
from GFT and spectral modes. In particular, if the input
day x € RJ;[O“ is determined to be a strong OID via the
appropriate bounds, then we can compute the spectrum of the
signal {af,...,a%}. Using the spectral energy percentage
contained in each eigenvector mode, we can retrieve the dom-
inant eigenvector modes by selecting those with significant
energy contributions. We can then identify subsets of airports
implicated in a particular strong OID day, and use those
airports as the basis for an in-depth operational analysis.

B. Outlier interpretation examples

We apply our framework to interpret some strong OID days
within our data set and illustrate the operational insights that
can be gained from this process. Specifically, we identify
disruptive events that occurred during a particular day by
focusing our attention on prominent airports within activated
eigenvector modes and cross-referencing with factors ranging
from meteorological events, airport outage, consumer behav-
ior, and airline operational practices.

We select 6 strong OID days from the China airport network
and present them in Table II along with their TD, TV, and
the fraction of spectral energy a?/ >, a? explained by the
dominant modes. We plot the relevant modes in Figure 9.

e 6/10/2017 and 9/25/2017: The dominant eigenvector

mode vg shown in Figure 9(c) indicates that these two
days were classified as outliers because the two Shanghai

Date TD TV EV Mode
(x10% min) | (x108 min®) | % spec. energy
9/25/2017 5.70 8.12 8 (12%)
1/28/2012 5.88 6.94 3 (23%)
12/29/2012 7.64 11.00 23 (10%)
6/10/2017 7.79 14.00 8 (15%)
1/18/2012 7.95 15.10 24 (18%)
6/21/2012 8.03 11.10 6 (10%)
TABLE II

THE SIX STRONG OID DAYS IN THE CHINESE NETWORK WITH THE
HIGHEST TD. THE DATE IS GIVEN IN MONTH/DATE/YEAR FORMAT.

airports SHA and PVG had significantly higher delays
than airports in the north, specifically HET, SHE, and
CGO. This is operationally interpretable as heavy rain
and thunderstorms affected operations on both days in
the Shanghai area. In particular, September 25 involved
more than 100 cancellations at PVG, and June 10 resulted
in a 50% capacity reduction at SHA and PVG.

o 12/29/2012: The dominant mode w3 indicates that this

day was classified as an outlier because of two geo-
graphically proximate airports (TAO and TNA) having
substantially different delay magnitudes. Heavy snowfall
at TAO (resulting in 145 cancelled flights) with relatively
no noticeable impact at TNA provides an operational
interpretation for this unexpected delay distribution.

e 1/18/2012: The eigenvector mode vo4 highlights unex-

pected spatial delay distributions where delays at TAO
and CKG move in opposite directions to XIY. Severe
ice accumulation and fog at XIY forced a major airline,
China Eastern, to cancel 186 flights. Interestingly, the
delays were contained at XIY and did not spread to
the other China Eastern focus city of TAO. This is
operationally unexpected, as delays typically propagate
within an airline’s sub-network during disruptions at a
major hub.

e 6/21/2012: Eigenvector mode vg indicates that airports

in the north — HET, HRB, SHE, DLC - had delay
magnitudes opposite to airports in the south (KMG,
CAN, SZX). This resulted in an unexpected delay dis-
tribution attributable to geographically-localized disrup-
tions. Specifically, adverse weather south of the Yangtze
river resulted in flood emergencies, disrupting airport
and airspace operations for all the southern airports.
The northern airports remained largely unaffected, and
experienced low delays. Again, this is unexpected given
the typical tendency of delays to propagate and spread.

e 1/28/2012: The activation of eigenvector mode vs indi-

cates that the delays at HAK were significantly higher
(or lower) than other airports in China, resulting in the
classification of this day as a strong OID. Upon closer
inspection, we identify two operational factors that may
have contributed to such a delay pattern. First, January 28,
2012 was the last day of the Spring Festival holidays in
China, resulting in higher-than-normal scheduled flights
at HAK (61,698 passengers on January 28 versus 36,142
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Fig. 9. Eigenvector modes observed during the six strong OID days in the Chinese airspace.

on January 22). Second, heavy fog on January 28 exac-
erbated the already-strained demand-capacity imbalance
and led to severe flight delays out of HAK.

Days classified as strong OID in the US can also be
interpreted by following the same workflow as detailed in
Figure 8. We previously carried out a detailed study where
US outliers were analyzed and interpreted [16]. Some of the
operationally relevant factors that helped interpret the outlier
classification included airport- and airline-specific outages,
airline hub locations, traffic flows, geographic proximity, and
specific weather disruptions such as nor’easter snowstorms,
Atlantic hurricanes, and thunderstorms. As an example of
conclusions drawn through this interpretation framework, we
found that nor’easters in the US tend to activate extremely
high-energy modes, much more so than other disruption types.

VI. CONCLUSIONS

We proposed a novel technique to identify outliers in
graph signals without any prior assumptions on the underlying
distribution of the signals. We demonstrated the applicability
of our methods for outlier detection in air traffic delays by
comparing the spatial distribution of delays in US and Chinese
airport networks. In summary, we (1) identified critical subsets
of airports in the US and Chinese airport networks that should
be monitored for unexpected spatial delay distributions; (2) ob-
served higher baseline variability in spatial delay distributions
in China as compared to the US; (3) compared OIS, weak

OID, and strong OID outlier statistics between China and the
US as well as examined temporal trends; (4) demonstrated the
theoretical as well as operational interpretability of our outlier
identification results.

We anticipate several interesting directions for future work.
Some are more theoretical, such as deriving analytical outlier
bounds under specific distributions for the graph-supported
data (e.g. the Gaussian case was addressed in [17]), using a
directed graph for the underlying structure, or inferring causal
trends from the time-series of nodal signals. Another interest-
ing and applications-oriented research direction is the predic-
tive aspect. For example, can we predict the spatial distribution
of airport delays for the rest of the day, or deduce whether a
day would be an outlier (OIS, weak OID, or strong OID) based
on available partial information, e.g. you have data up to 10
am for this day. Such studies may be augmented by performing
a spectral analysis at the temporal resolution of an hour,
rather than the daily timescale we used in this work. Finally,
our ongoing work related to airline-specific sub-networks has
shown that outlier analysis conditioned on individual airlines
(e.g. airline-specific graph Laplacians, eigenvector modes, etc.)
produces results that differ significantly from network-wide
findings and may further improve predictive models.
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APPENDIX

TATA Airport Name TATA Airport Name

CAN Guangzhou ATL Atlanta

CGO Zhengzhou BOS Boston

CKG Chongqing BWI Baltimore

CSX Changsha CLT Charlotte

CTU Chengdu DCA ‘Washington-National

DLC Dalian DEN Denver

FOC Fuzhou DFW Dallas-Fort Worth

HAK Haikou DTW Detroit

HET Hohhot EWR Newark

HGH Hangzhou FLL Fort Lauderdale

HRB Harbin HNL Honolulu

KMG Kunming IAD ‘Washington-Dulles

KWE Guiyang IAH Houston-Intercontinental

NKG Nanjing JFK New York-John F. Kennedy

NNG Nanning LAS Las Vegas

PEK Beijing LAX Los Angeles

PVG Shanghai-Pudong LGA New York-LaGuardia

SHA | Shanghai-Hongqiao | MCO Orlando

SHE Shenyang MDW Chicago-Midway

SYX Sanya MIA Miami

SZX Shenzhen MSP Minneapolis

TAO Qingdao ORD Chicago-O’Hare

TNA Jinan PDX Portland

TSN Tianjin PHL Philadelphia

TYN Taiyuan PHX Phoenix

URC Urumgqi SAN San Diego

WUH Wuhan SEA Seattle

XIY Xi’an SFO San Francisco

XMN Xiamen SLC Salt Lake City

7ZGC Lanzhou TPA Tampa
TABLE III

TIATA THREE-LETTER CODE AND CORRESPONDING FULL AIRPORT NAME
OF THE AIRPORTS WITHIN OUR GRAPH OF CHINA AND THE US.
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Fig. 10. Geographic locations of the airports (IATA code given) within our
graph of China (a) and the US (b). Note that HNL is not shown in (b) for
simplicity.



