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Abstract— The detection of outliers in data, while pre-
serving the privacy of individual agents who contributed
to the data set, is an increasingly important task when
monitoring and controlling large-scale systems. In this paper,
we use an algorithm based on the sparse vector technique to
perform differentially private outlier detection in multivariate
Gaussian signals. Specifically, we derive analytical expressions
to quantify the trade-off between detection accuracy and
privacy. We validate our analytical results through numerical
simulations.

Index Terms— Differential privacy; Outlier detection; Data
storage systems; Pattern recognition and classification.

I. INTRODUCTION

The identification of outliers in a data set plays a major
role in the monitoring and control of intelligent systems
such as transportation networks, power grids, and other
urban infrastructures. The underlying data, however, often
consist of privacy-sensitive information such as the real-
time locations [1] or identity-revealing characteristics of
individuals. It is therefore necessary to implement privacy-
preserving mechanisms when sensitive data is shared for
the purposes of inference and control. A privacy guarantee
incentivizes agents to participate truthfully, allowing for
accurate outlier detection and subsequent control actions.
Other examples that motivate the need for privacy in control
systems can be found in [2]–[5].

Many privacy-preserving data analysis techniques adopt
the notion of differential privacy [6]–[8], which provides
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a much stronger privacy guarantee than anonymization
techniques such as k-anonymity [9]. Differential privacy
guarantees that the participation or absence of an individual
agent does not significantly alter the output of any query
(e.g., “is

∑
i xi an outlier?”). Differential privacy can be

achieved through input (i.e., random noise is added to
xi,∀i) or output perturbation (i.e., random noise is added
to
∑
i xi) [7]. Higher noise provides more privacy at the

cost of query accuracy. A more sophisticated method is the
sparse vector technique (SVT) [6], [10], which provides,
for certain types of queries, higher accuracy for the same
level of privacy.

Several differentially private algorithms have been pro-
posed for classical hypothesis testing. For example, [11]
and [12] assume categorical data that follow a multinomial
distribution in order to prove the privacy properties of
their proposed algorithms. Differential privacy has also
been considered in the context of anomaly detection, using
Monte Carlo (MC) [11], [12] and machine learning-based
[13] techniques. [14] and [15] propose statistical tests for
normally distributed data under differential privacy con-
straints to decide whether or not the mean of a sequence
of scalar, independent, and identically distributed (i.i.d.)
Gaussian random variables attains a given value. Further-
more, [16] proposes a differentially private mechanism to
detect distributional changes at an unknown change-point in
a sequence of scalar i.i.d. random variables. However, these
prior works assume that the privacy-sensitive data provided
by each individual are i.i.d., which may not be the case in
data generated from networked systems where individuals’
data are correlated [5], [8], [17].

Our contribution in this paper is the design and analysis
of SVT for detecting outliers in multivariate Gaussian
signals. This setting considers agents whose signals may
be correlated. Our approach differs from prior work in
two ways: Unlike the Monte Carlo approaches presented
in [11], [12] and the machine learning-based approach of
[13], we derive analytic expressions for the accuracy of
a differentially private mechanism; unlike [14]–[16] that
only consider i.i.d. scalar quantities, we explore multivariate
correlated data.

The remainder of the paper is organized as follows: We



set up the problem in Sec. II, present our main results in
Sec. III, validate our approach with numerical simulations
in Sec. IV, and provide concluding remarks in Sec. V.

II. PROBLEM STATEMENT

A. Notation

A generic probability triple is denoted (Ω,F ,P), where
F stands for a σ-algebra on the sample space Ω, and P
is a probability measure defined on F . The `p-norm of a
vector x ∈ Rn is denoted by ‖x‖p = (

∑n
i=1 |xi|

p
)
1/p, for

p ∈ [1,∞]; we use |·| for absolute values. We denote an n-
dimensional Gaussian vector with mean µ = [µi] ∈ Rn×1

and covariance Σ ∈ Sn×n�0 as X = [Xi]
i.i.d.∼ N (µ,Σ). We

denote by Lap(b) a zero-mean Laplace distribution with
variance 2b2 and probability density function f(x; b) =
1
2b exp

(
− |x|b

)
. Let µ = E [

∑n
i=1Xi] = 1ᵀµ, σ2 =

Var [
∑n
i=1Xi] = 1ᵀΣ1, and σ =

√
1ᵀΣ1. When µ,

σ, and σ2 have no indices, they refer respectively to the
mean, standard deviation, and variance of the sum of the
elements in X, i.e.,

∑n
i=1Xi

i.i.d.∼ N (µ, σ2). We denote
the error function by erf(x) = 2√

π

∫ x
0
e−t

2

dt, and the
complementary error function by erfc(x) = 1− erf(x).

B. Outlier Detection Problem

Consider a sequence of m observations Om :={
x(k)

}k=m

k=1
, with x(k) =

[
x

(k)
i

]
∈ Rn×1. For example,

each x(k) can represent a vector at each time k, and x
(k)
i

can represent the value corresponding to an individual in the
vector at the time k. The data Om is observed sequentially.
Assume that the signal vectors x(k) are realizations of
X

i.i.d.∼ N (µ,Σ), meaning that the samples across k are
i.i.d. However, individual values across each vector x(k)

are correlated. We design a statistical test to check whether
or not there is an outlier in terms of the magnitude of the
signal. We first formally define the term outlier, as used
throughout this article.

Definition 1. An observation x(k) is labeled as an outlier
of level κ if

∑n
i=1 x

(k)
i /∈ [µ− κσ, µ+ κσ].

In other words, we label an observation as an outlier of level
κ if the sum of its elements is at least κ standard deviations
away from its expected value. This notion of outliers
captures the impact of the signal magnitude. Accordingly,
we map observations in the data set Om to one of the two
following hypotheses:H0 :

∣∣∣∑n
i=1 x

(k)
i − µ

∣∣∣ < h : x(k) is not an outlier

H1 :
∣∣∣∑n

i=1 x
(k)
i − µ

∣∣∣ ≥ h : x(k) is an outlier

where the threshold is h = κσ. Consequently, we can
compute the following decision rule:

d
(
x(k)

)
=

{
0 if q

(
x(k)

)
< h : H0 is chosen

1 if q
(
x(k)

)
≥ h : H1 is chosen,

(1)

where

q
(
x(k)

)
=

∣∣∣∣∣
n∑
i=1

x
(k)
i − µ

∣∣∣∣∣ . (2)

We note that rule (1) determines whether or not an
observation is an outlier, and it depends on the data set
Om. In this article, we consider cases in which the data
set Om is privacy-sensitive. As we discuss in the next
subsection, our goal is to publish the results of outlier
detection under a differential privacy constraint. In order to
satisfy the differential privacy requirement, we will modify
the decision rule (1) in Sec. III. In the rest of this section,
we briefly review the concepts of differential privacy and
differentially private mechanisms [18].

C. Differential Privacy

Consider a space H of data sets. Throughout this article,
we have that H ≡ Rn×m denotes the space containing the
observation sequence Om. A mechanism M is defined as
a random map from H to some measurable output space.
The goal of a differentially private mechanism is to produce
outputs with similar distributions for inputs that we wish
to make indistinguishable [6].

We define a symmetric binary relation Adj on H, called
adjacency, to describe which inputs are considered “close”
in some sense. For example, two inputs are termed adjacent
if all the entries are the same for all individuals, except
for at most one entry corresponding to one individual, that
has a bounded difference. More formally, two sequences of
observations Om :=

{
x(k)

}k=m

k=1
and Õm :=

{
x̃(k)

}k=m

k=1
are adjacent if, and only if:∣∣∣x(k)

i − x̃
(k)
i

∣∣∣ ≤ ρ(k), for some 1 ≤ k ≤ m and 1 ≤ i ≤ n,

and x(`)
j = x̃

(`)
j , for all ` 6= k and j 6= i, (3)

with
{
ρ(k)

}m
k=1
∈ Rm>0 a given set of positive numbers. If

Om and Õm are adjacent, we say Adj(Om, Õm). In other
words, two observed sequences are adjacent if and only if
they differ only by the value of a single element x(k)

i of a
single vector x(k), with bounded deviations in the value of
that element. In what follows, we denote ρ = max

1≤k≤m
ρ(k).

Next, we provide the formal definition of differential
privacy as presented in [18], [19].

Definition 2. Consider H, a space provided with a sym-
metric binary relation denoted Adj, and let (P,M) be a



measurable space, where M is a given σ-algebra over P .
Let ε ≥ 0. A randomized mechanism M from H to P is
ε-differentially private (for Adj) if the following property
holds for all Om, Õm ∈ H such that Adj(Om, Õm), for
all sets S in M:

P (M (Om) ∈ S) ≤ eε P
(
M
(
Õm
)
∈ S

)
. (4)

Note that (4) implies that the distributions of the random
variables M (Om) and M

(
Õm
)

are close when Om and

Õm are adjacent. We now define a quantity that plays a
key role in the design of differentially private mechanisms.

Definition 3. Consider a space of data sets H
with an adjacency relation Adj, and let P be a
vector space with norm ‖·‖P . The sensitivity of
a query q : H 7→ P is the quantity ∆Pq :=

sup{Om, Õm : Adj(Om,Õm)}
∥∥∥q (Om)− q

(
Õm
)∥∥∥
P
. In

particular, when P = Rn (with n = +∞ being a
possibility), and given the p-norm for p ∈ [1,∞], this
definition of ∆Pq is called the `p-sensitivity. For notational
brevity, we simply write ∆ instead of ∆Pq when the context
is clear.

In this article, we design a differentially private outlier de-
tection algorithm for multivariate Gaussian signals, namely,
an outlier detection algorithm which publishes a decision
that is differentially private with respect to the adjacency
relation (3) for queries on Om.

III. DIFFERENTIALLY PRIVATE DETECTION OF
OUTLIERS IN MAGNITUDE

Following the SVT as presented in [20], we design the
following differentially private outlier detection algorithm
for multivariate signals:

Algorithm 1: OUTLIERDETECT(Om, q(·), h, ρ, ε)
Set ∆ = ρ

Compute noisy threshold h̃ = h+ Lap
(

2∆
ε

)
d
(
x(k)

)
← 0, ∀k

for each query k do
Compute ζ(k) ∼ Lap

(
4∆
ε

)
if q

(
x(k)

)
+ ζ(k) ≥ h̃ then

d
(
x(k)

)
= 1

K ←
∑m
k=1 d

(
x(k)

)
Return K,

{
d
(
x(k)

)}k=m

k=1

Theorem 1. OUTLIERDETECT(Om, q(·), h, ρ, ε) is
K+1

2 ε-differentially private for the sequence of queries{
q
(
x(k)

)}k=m

k=1
as defined in (2) and adjacency relation

(3).
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Fig. 1. Differentially private outlier detection algorithm for each
observation vector x(k) =

[
x
(k)
i

]
∈ Rn×1. We omit k for brevity.

Proof. For two observation sequences Om and Õm with
an adjacency relation defined in (3), the sensitivity can be
bounded as follows:

∆ = sup
1≤k≤m

Om,Õm : Adj(Om,Õm)

∣∣∣q (x(k)
)
− q

(
x̃(k)

)∣∣∣
= sup

1≤k≤m
Om,Õm : Adj(Om,Õm)

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

x
(k)
i − µ

∣∣∣∣∣−
∣∣∣∣∣
n∑
i=1

x̃
(k)
i − µ

∣∣∣∣∣
∣∣∣∣∣ .

By using the reverse triangle inequality, it follows that

∆ ≤ sup
1≤k≤m

Om,Õm : Adj(Om,Õm)

∣∣∣∣∣
n∑
i=1

x
(k)
i −

n∑
i=1

x̃
(k)
i

∣∣∣∣∣
= sup

1≤k≤m
Om,Õm : Adj(Om,Õm)

∣∣∣x(k)
i − x̃

(k)
i

∣∣∣ ≤ ρ. (5)

We deduce the result from the proof argument of [20,
Theorem 1], and find that

P(OUTLIERDETECT(Om, q(·), h, ρ, ε) = d)

P(OUTLIERDETECT(Õm, q(·), h, ρ, ε) = d)
≤ e ε2

(
e
ε
2

)K
,

≤ e
(K+1)ε

2 .

Fig. 1 summarizes the OUTLIERDETECT algorithm.

A. Performance Analysis

In this section, we characterize the privacy-utility trade-
off of our privacy-preserving algorithm, OUTLIERDETECT.
Our analysis relies on the following calculation.

Proposition 1. Consider two independent random variables
Z1 ∼ Lap

(
4∆
ε

)
and Z2 ∼ Lap

(
2∆
ε

)
. The probability

density function (pdf) of the difference Z = Z1 − Z2 can
be computed as follows:

fZ(z) =
ε

12∆
e−

|z|ε
4∆

(
2− e−

|z|ε
4∆

)
. (6)



Proof. Since the Laplace pdf is symmetric about 0, the
pdf of Z2 is the same as pdf of −Z2. Thus, the pdf of
Z = Z1 + (−Z2) is given by

fZ(z) =

∫ ∞
−∞

fZ1
(z − τ)fZ2

(τ)dτ

=
ε2

32∆2

∫ ∞
−∞

exp

(
−ε|z − τ |

4∆
− ε|τ |

2∆

)
dτ.

(7)

We evaluate (7) for two cases: z ≥ 0 and z < 0. When
z ≥ 0, we split the integration limits in (7) into (−∞, 0]∪
[0, z] ∪ [z,∞) in order to remove the absolute values on
z − τ and τ . Performing a similar decomposition of the
integration domain for z < 0 and combining the two cases
give the desired result in (6).

Next, we give formal definitions of the classification errors
that will be used to characterize the performance of the
OUTLIERDETECT algorithm.

Error definitions

Two types of errors are important for any classification
or hypothesis testing problem: Type I (or false positives)
and Type II (or false negatives). In our case, the Type I
error rate (PI ) is the probability that a nominal data point is
classified incorrectly as an outlier by the OUTLIERDETECT
algorithm, and the Type II error rate (PII ) is the prob-
ability that an outlier is classified incorrectly as nominal
by OUTLIERDETECT. Complementary to PI is the true
negative rate given by 1 − PI ; similarly, the true positive
rate is given by 1 − PII . Figure 2 shows a geometric
perspective of these four probabilities with respect to the
threshold h, the query q

(
x(k)

)
, and noise Z drawn accord-

ing to the density (6) from Proposition 1. Next, we use
these error definitions to discuss the performance of the
OUTLIERDETECT algorithm.
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Fig. 2. Geometry of the detection probabilities for Algorithm
OUTLIERDETECT (Om, q(·), h, ε).

First, we need to derive the pdf of the queries q
(
x(k)

)
.

For conciseness, let fQ(q) denote the pdf of q
(
x(k)

)
. The

following proposition gives us an expression for fQ(q):

Proposition 2. Each query q
(
x(k)

)
defined in (2) is a

realization of a random variable Q whose pdf is

fQ(q) =
2√

2πσ2
e−

q2

2σ2 , for q ≥ 0. (8)

Proof. Note that Q = |
∑n
i=1Xi − µ|, where

∑n
i=1Xi ∼

N
(
µ, σ2

)
. Equivalently, Q = |Y |, where Y = N

(
0, σ2

)
.

Hence, fQ(q) = fY (q) + fY (−q), and the result follows.

Next, in Theorem 2, we derive an analytical formula
for the true positive rate 1− PII of the OUTLIERDETECT
algorithm.

Theorem 2. For each data point indexed by k = 1, . . . ,m,
the algorithm OUTLIERDETECT (Om, q(·), h, ρ, ε)
achieves the following true positive probability:

1− PII = 1 +
c

6
e2a1ε+4a2ε

2

erfc

(
a1

2
√
a2

+ 2ε
√
a2

)
− 2c

3
ea1ε+a2ε

2

erfc

(
a1

2
√
a2

+ ε
√
a2

)
,

with c = 1/ erfc
(
h/
(
σ
√

2
))

, a1 = h/ (4ρ), and a2 =
σ2/

(
32ρ2

)
.

Proof. The outlier detection algorithm gives a true positive
result when q

(
x(k)

)
+ζ(k) ≥ h+η and q

(
x(k)

)
≥ h, with

ζ(k) ∼ Lap
(

4ρ
ε

)
and η ∼ Lap

(
2ρ
ε

)
.

Combining the noise terms, we can define z(k) = ζ(k)−
η, where z(k) has density (6) from Proposition 1. We then
have the true positive rate, defined in terms of a conditional
probability, as:

1− PII = P
(
q
(
x(k)

)
+ z(k) ≥ h

∣∣∣ q (x(k)
)
≥ h

)
= P

(
Q+ Z ≥ h

∣∣∣Q ≥ h) .
Denoting the true positive region in Figure 2 (i.e., the 1−
PII region) by R, and using the fact that Q and Z are
independent, we have:

1− PII =

∫∫
R fQ(q)fZ(z) dz dq∫∞

h
fQ(q) dq

.

Expanding using Propositions 1 and 2, we get:

1− PII =
ε
∫∞
h

∫∞
0

(
2e

zε
4ρ − 1

)
e−

q2

2σ2− zε2ρ dz dq

6ρσ
√

2π
∫∞
h

2
σ
√

2π
e−

q2

2σ2 dq

−
ε
∫∞
h

∫ 0

h−q

(
e
zε
4ρ − 2

)
e

1
4

(
zε
ρ −

2q2

σ2

)
dz dq

6ρσ
√

2π
∫∞
h

2
σ
√

2π
e−

q2

2σ2 dq
.

(9)

The rest of the proof involves algebraic simplification of
Equation (9) in terms of erfc, and defining appropriate
constants c, a1 and a2.



Corollary 1. The true positive probability as derived in
Theorem 2 is 1/2 for ε→ 0, and 1 for ε→∞.

Proof. limε→0 (1− PII) = 1/2 follows from direct substi-
tution. limε→∞(1−PII) = 1 is obtained using L’Hôpital’s
rule and the fact that d

dx erfc(x) = − 2√
π
e−x

2

.

Theorem 3. For each data point indexed by k = 1, . . . ,m,
the algorithm OUTLIERDETECT (Om, q(·), h, ρ, ε) incurs
the following false positive probability:

PI =
ce−2a1ε+a2ε

2

6 (c− 1)
×[

4ea1ε

(
erf (ε

√
a2)− erf

(
− a1

2
√
a2

+ ε
√
a2

))
−e3a2ε

2

(
erf (2ε

√
a2)− erf

(
− a1

2
√
a2

+ 2ε
√
a2

))]
,

with constants c, a1, and a2 as defined in Theorem 2.

Proof. The proof is similar to that of Theorem 2.

Corollary 2. The probability PI of incurring a Type I error
(as derived in Theorem 3) is 1/2 for ε → 0, and is 0 for
ε→∞.

Proof. limε→0 PI = 1/2 follows from direct substitu-
tion. The other limit, limε→∞ PI = 0 is derived using
L’Hôpital’s rule and d

dx erf(x) = 2√
π
e−x

2

.

B. Discussion

In the proposed OUTLIERDETECT algorithm, the dif-
ferential privacy parameter ε directly affects the scale of
the noise terms for both the query and the threshold.
Corollaries 1 and 2 confirm our intuitions of the behavior
of the true positive and false positive probabilities of
OUTLIERDETECT at the two extreme regimes: infinite
noise (ε→ 0) and no noise (ε→∞). In the former case, the
ε-differentially private OUTLIERDETECT algorithm classi-
fies no better than a random guess, with both 1 − PII =
PII = 1/2 and PI = 1−PI = 1/2. In the latter case, the ε-
differentially private variant of OUTLIERDETECT behaves
exactly like its non-differentially private counterpart, so no
Type I nor Type II errors are expected. In other words, for
the case with no noise, we have that PI = PII = 0, and the
true positive and true negative probabilities are both equal
to 1.

IV. NUMERICAL SIMULATIONS

We generate a data set of residuals Om with m = 1, 000,
x(k) ∈ R30×1 with x(k) i.i.d.∼ N (µ,Σ), and 1ᵀµ = 1.73 ×
104,1ᵀΣ1 = 3.01 × 107. We set a sensitivity of ∆ =
ρ = 500. We first compare the analytical and empirical
performance of Theorems 2 and 3, using Om. We set h ≈

(a) (b) (c)

Fig. 3. PI and PII are direct evaluations of the true positive (Theorem
2) and false positive (Theorem 3) probabilities, whereas P̂I and P̂II are
probabilities from numerical simulations.

(a) (b) (c)

Fig. 4. PI and PII evaluated using Theorems 2 and 3 for different
levels of privacy (i.e., different values of ε): each curve is constructed by
varying the value of the threshold h.

(a) (b) (c)

False Positive Rate

T
ru
e
P
os
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e
R
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e

Fig. 5. ROC curves for OUTLIERDETECT, for the example described in
Section IV.



9.13 × 103, resulting in 10% of observations x(k) being
classified as outliers. This comparison is plotted in Figure
3. Note the validation of our analytical expressions in the
limiting regimes of ε → 0 and ε → ∞. Additionally, the
classification performance degrades (“i.e., less information
is revealed”) with higher levels of privacy (i.e., ε decreases).

In Figure 4, we examine the performance of Theorems
2 and 3 with respect to Om, parameterized by threshold h.
Each ε-level curve in Figure 4 sweeps out the PI versus PII
probabilities from left to right corresponding to decreasing
h. We see that for high privacy requirements (i.e., ε = 0.01),
the classifier conceals information regardless of the thresh-
old h. As the privacy requirements relax, the incidence of
false positive classifications decrease with higher h, at the
cost of incurring more false negatives.

Finally, in Figure 5 we show via a receiver operating
characteristic (ROC) curve the trade-off between detection
accuracy (i.e., the true positive rate 1 − PII versus false
positive rate PI ) and privacy requirements when we use
OUTLIERDETECT to analyze Om. Once again, we set h ≈
9.13× 103. As expected, the performance of the algorithm
is worse in the high privacy regime (i.e., as ε becomes
smaller).

V. CONCLUSION

In this article, we considered the problem of conduct-
ing norm-based outlier detection in multivariate Gaussian
signals under a differentially private constraint. We de-
signed a differentially private outlier detection algorithm,
and derived closed-form expressions for its classification
probabilities. Using a numerical example, we quantified
the trade-off between classification accuracy and privacy,
and empirically validated our theoretical results. Our on-
going work investigates the applications of the proposed
framework to mode detection in hybrid systems, and to the
classification of graph signals.
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